第一章 緒 論

步進馬達實際上大量使用是自 1970 年代起,而且使用量仍繼續 上升,此乃因自動化設備或資訊系統不斷有此需求,且使用步進馬 達間歇性的利用價值被發現,當然最主要的還是驅動電路用的電晶 體的價格下降及 IC 等半導體技術的進步。由於科技的進步,精密的 小型馬達的研究亦不斷在世界各地展開著;這些精密的小型馬達有 微小型馬達、無芯馬達等直流馬達及感應馬達、反作用馬達、磁滯 馬達等交流馬達,當然還有步進馬達,若在再包括特殊馬達,則種 類就非常多^[1];步進馬達又稱脈衝馬達、脈波馬達、國外一般稱 step motor、stepping motor、pulse motor、stepper servo、stepper 等等。

在電子電機的科技迅速發展的同時,政府和民間企業亦全力推 動工廠自動化(factory automation, FA) 和辦公室自動化(office automation, OA),在這些資訊設備自動化的過程中,馬達是驅動這 些設備的核心。馬達的驅動系統包含馬達本體的設計、馬達控制器 與驅動器的設計。目前被業界較常採用的馬達有二種,一種是直流 伺服馬達,一種是步進馬達,而步進馬達的低價位與開迴路的定位 架構,更使得其成為市場寵兒,應用實例如:磁碟機的磁頭定位, 印表機內噴墨頭的位置決定及定尺寸傳送,傳真機、繪圖機、掃描 器、數位相機之定位運轉要求、機器人的操控、縫紉機的編織 等 等,這些周邊設備均利用步進馬達作為驅動力來源。

1.1 研究動機與方法

在各種不同馬達之中,由於步進馬達能夠以脈波做數位控制, 且以相當高的精確度停止至指定位置,維護也十分容易,是個可靠 度很高的系統。其中又以二相複合型(hybrid type)步進馬達用途最 廣,最廣受消費者青睞。有鑑於此,對於研究步進馬達的興趣便由 然而生;而步進馬達不僅需控制馬達做定位運轉外,尚需兼顧暫態 狀況下的性能及馬達本身的振動現象,使得問題變得非常複雜。

在研讀有關步進馬達的著作及論文,發現這些著作的重點,主 要是說明步進馬達驅動電路的設計與控制方法^[2],大多偏重於電氣 特性技巧的探討;而由於馬達的機械結構,定子與轉子的型態大多 有固定的模式,變化不大,而晚近的學者,現皆以利用二維有限元 素法、三維有限元素法做電腦磁路模擬^[3-4],分析馬達的磁場特性, 改善馬達的機械結構或磁迴路,進而有效提升馬達效能。

本論文則站在使用者觀點下,思考如何去操作二相複合型步進 馬達,實際上步進馬達的控制,需在開迴路下控制,才有它的價值 存在,而在開迴路控制中,最主要的就是要明瞭受控系統的數學模 式,故本文提出二種對步進馬達未知參數求解方法,並比較其特點, 且由於量測步進馬達步階響應的儀器,擷取資料速度的能力各有不 同,在此我們也做了一番探討。而若所分析的參數與實際的參數吻 合,未來我們可依馬達的步階響應,推得馬達的實際參數值。對使 用者而言,就能比較容易決定其控制步進馬達的策略(control laws)

在與指導教授及工研院光電所同仁討論過後,發現如能利用參數 分析整顆步進馬達步階響應的技術,將是一個不錯的想法和研究途 徑,而論文完成後之結果亦可提供業界參考使用。

1.2 研究目的

本論文提出一種利用量測馬達的角位移與電壓電流與時間的關 係,事先預測馬達的動態響應,估測出馬達未知參數值,進而掌控 整顆馬達的動作,有效提昇其效能。所以只要分析的參數值夠精準, 就可決定馬達的控制律,而使驅動系統有較好的定位性質(不失步、 暫態特性良好)與機械特性(少噪音、少振動)。以求達到未來最 佳化時的需求。

由於量測步進馬達步階響應的儀器, 擷取資料速度的能力各有 不同,我們亦想瞭解此解析度的不同,對所推估出的參數值,影響 程度如何。

- 1.3 研究問題探討
- 若步進馬達未結合參數做系統測試 trial and error (command) 時間較久。
- 2. 失步及振動現象仍無法有效獲得改善。
 若製造廠商未提供完整參數值,仍無法有效掌控其性能。
- 3. 若步進馬達結合參數做系統測試
 - (a) trial and error (command) 時間可有效縮短。
 - (b) 失步及振動現象能有效獲得改善。
 - (若製造廠商未提供完整參數值,仍能有效掌控)
- 4. 一般業界做法
- (a) 直接 trial and error花費時間久,不失步即 ok,但非是最佳的。
- (b) 振動過大:加衰減器或改變驅動器的特性。

1.4 步進馬達的回顧

步進馬達從開發完成至今,已有數十年的歷史。荷蘭的夫洛曼 所提出「利用電磁鐵吸引力,產生旋轉的活塞(plunger)動作」,是 目前步進馬達的雛形。而在早期的研究學者中,包括了日本東京大 學生產技術研究所的大島教授、富士通的稻葉清右衛門氏及東京工 業大學的池邊潤教授為研究先驅者。又電器試驗所(現在的電子技術 綜合研究所)的土屋誠治世,在1959~1961年作驅動方式,動態特性 與靜態特性方面的研究,確立1-2相激磁法^[5]。

隨著電子技術的進步,激磁線圈電流的相位切換動作已由機械 式凸輪切換,演變成電子換相電路。後來,工程師們又發展出以永 久磁鐵方式組成的步進馬達,因其步進角度太大,無法作較小的微 步轉動,以致毫無精確度可言。至 1950 年代,小角度的步進馬達被 發明後,數位式控制機器受到矚目,屢經改良後,而成為目前的型 態,以下茲將步進馬達的發展過程及應用,敘述如下^[5-7]:

1920 年代:英國海軍已經將 VR 型步進馬達應用於炮身或水雷發射 角度的控制,但因用轉動開關做驅動電路,所以響應頻 率低(step response frequency)、效率較差。

1930年代:日本開始研究步進馬達。

1939 年代:日本參考荷蘭夫洛曼的觀念,發展出可變磁阻型(variable reluctance)步進馬達,並申請專利。

1950年代:日本 Sigama 公司開發出步進角度較小的步進馬達,並
應用於數位控制型機器,其後改良而成為現在的形態。
1958年代:日本東京大學生產技術研究所的大島康次郎教授,曾在

第一次自動控制聯合演講會發表了一種特殊 8 極齒的 VR型步進馬達。

1959 年代:大島康次郎教授在第2次聯合演講會又發表了一種3相 VR型馬達,其連績特性響應可達到1500 pps。

- 1960 年代:由於半導體元件的發展十分迅速,1964 年 MOS 電晶體 問世,1965 年出現 IC,1967 年 LSI 上市。而積體電路 元件的普遍化及邏輯電路設計技術大為提升,再加上數 位計算機及微處理技術的進步,使得步進馬達受到廣泛 使用。而較常使用的場合是電腦的周邊設備,例如:印 表機、磁卡機、繪圖機、機器人手臂...等等。
- 1970 年代:日本 1.8°步級 4 相混合 PM 型電動機上市,山洋電器 在 1967 年商品化,亦即步進馬達全盛時期的開始。
- 1975年代:每年有數十件左右的專利或實用的新案。
- 1985年代:約在十年間,使用量急速上升,1983 生產約有 3000 萬

台,其中多數的應用與 OA 有關^[8]。

2000 年代:0.72 度的五相步進馬達使用活躍,並具有形小、高反應 性及高精確度等特性,且大量運用在各種高科技產業。

2002年代:日本東方馬達公司開發出世界上,最小、最輕的步進馬達,此馬達平面為 24 毫米見方,重約 50 克,可以放在 手指尖上,最大可以產生 24 毫牛頓的力量。此種馬達型號為 PK513PA,分成單軸及 軸二款。

1.5 步進馬達的特徵

步進馬達和一般馬達在許多方面不盡相同,下面是步進馬達的 特徵^[6,8]:

- (1) 在低速時有很高的力矩,非常容易控制機械位置。
- (2) 馬達的總旋轉角度與輸入脈波數的總數成比例。
- (3) 用數位脈波信號,直接做開迴路控制,使系統簡化,成本低廉。
- (4) 對軸子的轉動慣量,發生力矩大,與普通的同步馬達比較具爬 昇能力;又對欲保持一定位置的外力反抗力矩大。
- (5) 旋轉角度誤差量很小,沒有累積誤差。
- (6) 步進馬達無碳刷,無機械損耗,本體接點少,因此可靠性高。
- (7) 容易起動、停止、正逆轉、變速、響應性良好。
- (8) 靜止時,可以有較高保持力矩(detent torque),固定目前的位置。
- (9) 因功率或負荷過度所造成的停止,可以重覆使用不會造成馬達本身的傷害。

步進馬達具有以上的特徵,因此被廣泛的應用於辦公室自動化 事務及資訊系統裝置上。但步進馬達也存在某些問題。茲列舉如下

- (a) 在某一頻率容易發生振動、諧振現象,且對慣性之負荷較不易 因應。(一般在 100 pps~250 pps 附近的低速領域為諧振區域,也 會由於其他原因在高速時產生諧振)。
- (b) 高速旋轉時容易發生失步的現象。
- (c) 步級角或運動的增量固定,對步級解析度言缺少適應性
- (d) 在步級響應中相對約有較高的超越量(overshoot)及振盪。
- (e) 功率的輸出及大小受到限制。

1.6 步進馬達的分類

1.6.1 依其構造上分類

步進馬達若依其構造上分類,可分以下三種類型:

- (1) 可變磁阻型(variable reluctance type,VR)
- (2) 永久磁鐵型(permanent magnet type,PM)
- (3) 複合型(hybrid type,HB)

業界較常用的是可變磁阻型(VR type)與複合型(HB type)兩種。下面將簡介上述三種型式步進馬達的動作原理與特性^[8-9]:

步 進 馬 達 的 動 作 原 理 主 要 是 透 過 電 磁 場 的 增 量 運 動 (incremental-motion)將數位脈衝輸入轉換成類比輸出。在一定規劃 下,由電壓或電流激磁,然後只轉動一定的角度(稱為步級角)或作 一線性的增量。在正確的控制下,步進馬達輸出的步級數與輸入的 命令脈衝數(command pulse number)成比例。每一脈衝推動轉子,轉 軸移動一步級增量,且利用磁化特性將它鎖在一精確的位置上,

1. 可變磁阻型(VR)步進馬達

利用軟鐵加工,使其成為齒輪狀作為旋轉子(rotor)。然後,於 固定子(stator)上面捲繞線圈,如圖 1.1 所示,至於馬達的動作,係 利用電磁吸引力,吸引轉子的齒極旋轉而達成。當線圈不激磁時, 馬達之保持力矩為零,而且轉子的慣性較小。此時,得到的負載慣 性也很小,這表示其磁耦合性很小,可變磁阻型型馬達的步進角度, 一般為 15 度。

圖 1.1 可變磁阻型步進馬達的構造

圖 1.2 永久磁鐵型步進馬達的構造

2. 永久磁鐵型(PM)步進馬達

如圖 1.2 所示,為方便說明,假設轉子磁石只有一對 N 極和 S 極,由永久磁鐵所構成。而定子激磁線圈纏繞在定子上,其電流方向可決定轉子轉動方向。當線圈不通電流時,仍然會產生一定大小的保持力矩。步進角度一般為 45 度或 90 度,但採用亞鐵系(ferrite) 磁鐵的場合,步進角度一般為 7.5 度、11.25 度、15 度或 18 度。

3. 複合型步進馬達

複合型步進馬達(hybrid type)即 VR 型與 PM 型兩者的混合體, 見圖 1.3 所示,轉子磁極為齒數很多的齒輪,而定子每一凸齒數也 有很多的子齒。轉子的軸向上,裝一個軸向放置的永久磁鐵。在此 結構中,結合了 VR 型與 PM 型兩者的優點,其具有高精確度、高 力矩、及小步進角等特性。定子的圓周有 40 齒,轉子的圓周有 50 齒,所以定子的齒角(每齒所對應之圓心角)為 7.5°,轉子的齒角 為 7.2°。

1.6.2 依極性及繞線方式不同

依極性及繞線方式不同,可分為下列四種

- 1. 單極性(unipolar)
- 2. 雙極性(bipolar)
- 3. 單繞線(unifilar)
- 4. 雙繞線(bifilar)
- (1) 單極性

單極性,即是說定子齒的極性永遠在同一方向。因為激磁線圈 只有一組且所加的激磁電流為固定方向,電源構造簡單,如 VR 型 步進馬達,如圖 1.4 所示。

(2) 雙極性

雙極性即是說定子齒極性的交互變化。此方式尚分成兩種,一 種當定子是單一激磁線圈的電流正反交替變化,另一種則為有兩組 激磁線圈時,一組正向激磁,另一組反向激磁,使定子齒的極性變 化,此方式的電源構造較複雜,如 PM 型步進馬達,見圖 1.5 所示。

圖 1.3 複合型步進馬達的構造

圖 1.4 單極性定子形狀與激磁線圈

圖 1.5 雙極性定子形狀與激磁線圈

(3) 單繞線

採用單一激磁繞繞線,改變流通電流的方向,即將激磁電流方 向正反交互變化,此方式所採用的驅動方式為電流方向可以交互變 化的雙極性驅動方式。使用單極性運轉,激磁或不激磁,等效直流 的磁場與交變磁場重疊存在,其中的直流磁場對力矩的發生不但無 幫助,反而產生制動作用的特性。

(4) 雙繞線

即同一磁極上繞以方向相反兩組線圈。交互且以一定固定方向 的電流流通。雙線繞組的利用或依雙極運轉,使各相的極性交互變 化,馬達的效率高。此就 PM 型特別顯著,其主要目的為各齒的極 性能反轉來驅動。

1.7 步進馬達激磁方式

欲使步進馬達轉動,就需要驅動回路,包括決定激磁順序的順 序電路(sequential circuit)以及供應定子線圈激磁電流的電力控制電 路。依照步進馬達的激磁相數可分成2相馬達、5相馬達和6相馬 達,而一般的2相馬達中,有1相激磁方式、2相激磁方式以及1-2 相激磁方式,在5相馬達有4相激磁方式、4-5相激磁方式.....等等。

由於本論文,主要是在探討2相複合型步進馬達。所以下面僅 介紹2相步進馬達的激磁方式^[9]。

(1)1相激磁方式

每次激磁一相線圈,其優點為消耗電力小,且角精確度良好; 而缺點則為力矩小、阻尼特性差和振動大。圖 1.6 所示為步進馬達 的基本型,若步進角為ө,總回轉角為ө,將可表示為

 $\theta_{s} = \mathbf{m} \mathbf{\lambda} \mathbf{K} \mathbf{i} \mathbf{k} \times \mathbf{\theta}$

(2) 2相激磁方式

每次激磁兩相線圈,其優點為力矩大、阻尼效果好,可以在穩 定的操作區內使用,此種方式具有追蹤較高的脈波比率;缺點為消 耗能量大,需解決散熱問題;參見圖 1.7 所示。

(3) 1-2 相激磁方式

在圖 1.8 中,此種激磁方式是當線圈上流過的電流為 1 相 2 相 1 相 2 相間交互運作。此法可視為將 1 相激磁和 2 相激磁的合 成狀態,此法的最大特徵是馬達的步進角為半步,也就是說每當一 個原為 1.8°步進角時,若用此方法驅動,其步進角為 0.9°。換言之, 若要得到相同的角度則需要 1 相激磁的 2 倍脈波數,但此法可作較 小步進驅動。

上述的三種激磁方式不同,因可得到不同的步進角。所以吾人 可依所需,按照不同激磁方式的特徵,選擇適當的激磁方式。

步進馬達的工作特性無法以一般馬達的特性分析項目來描述,通常我們是以動態特性及靜態特性加以描述,茲說明如下^[7]:

圖 1.7 2 相激磁方式

1.8 步進馬達的動態特性與靜態特性

1.8.1 動態特性

(1) 最大啟動力矩(maximum running torque)

使步進馬達轉動的最大力矩。此為步進馬達在 10 pps 以下 低頻率啟動時,能夠轉動的最大力矩。

(2) 引入力矩(pull - in torque)

測量步進馬達的動態特性的頻率 力矩。即步進馬達能任 意起動的最大力矩。

(3) 脫出力矩(pull - out torque)

測量步進馬達的動態特性的頻率 力矩。即測試步進馬達 在不失去同步下所產生的最大力力矩。

(4) 頻率 力矩特性

見圖 1.9 所示,在自起動領域內運轉時,可以瞬間而且準確 地起動、停止、逆轉。如果將頻率慢慢上昇,或者將負載慢慢增 加,可以在超出輸出力矩之前運轉。頻率 力矩特性會隨驅動方 法,激磁方法而有很大的不同。

圖 1.9 步進馬達頻率 力矩特性

(5) 最大自起動頻率 (maximum starting stop pulse rate)

此為馬達在無負載的情況下,能夠與外部所給予的信號同步,不會發生誤步進,而作起動、停止、逆轉的最大輸入頻率。

(6) 自起動區域(start stop region)

可以和外部所給予的信號同步,而可以起動、停止、正逆轉的領域,在此領域內不會發生誤步進(mis-step)。

(7) 運轉區域(slew rate)

當頻率超過自起動頻率,或者負載力矩逐漸增加時,步進 馬達能夠不失去同步而可以反應的領域。

(8) 最大響應頻率(maximum slewing pulse rate)

在運轉領域內能夠驅動馬達的最大反應頻率。

慣性問題也是所有馬達所會遇到的問題,當然步進馬達也不 例外。步進馬達為了反覆作階段式的動作而旋轉,因此慣性負載 的大小會引起特性的變化。當慣性負載越大,最大自起動頻率越 低,自起動區域也越窄小。如果慣性負載增大而又要在運轉區域 運轉,就必須做加減速的動作。慣性負載所引起的自起動頻率最 大值的變化公式

$$f = \sqrt{\frac{f_s}{\sqrt{1 + J_L}}}$$
(1-1)

式中

f:具有慣性負載時的自起動頻率的最大值[pps]

- f_s:馬達的最大自起動頻率 [pps]
- J_{R} :旋轉子的慣性動量 [g.cm²]

 J_L : 負載的慣性動量 [g.cm²]

1.8.2 靜態特性

1. 解析度(resolution)

步進馬達的解析度是以一迴轉的步級數(stepper revolution) 表示。對馬達本身而言,解析度是不能改變的,但是系統的解析 度可由控制電路加以改變;譬如半步級的驅動其解析度為全步級 驅動約兩倍。步級的大小可由控制相對激磁電流的大小而決定。 利用這種原理將步級細分成若干準值的技術,稱為微步化。

2. 角度 力矩特性(stiffness 特性)

當馬達的輸出軸加上負荷時,轉子角度的變化和馬達力矩之 間的關係見圖 1.10 示。馬達軸加上外力時,產生角度變化θ_a。馬 達為了反抗因外力所產生的角度變化而產生力矩T_a。在穩定的範 圍內,角度的變化量大時,所產生的反抗力矩愈大,如果角度變 化過大,而進入不穩定的範圍,因為在不穩定範圍內,產生反相 的力矩會使馬達反向旋轉(馬達朝向和外力方向一致)。從穩定點 起,外力漸漸增加超過保持力矩(holding torque)時,轉子將越過不 穩定點而向下一個穩定點移動。

力矩與角度變化量之近似關係式:

$$T(\theta) = -T_{\rm H} \sin \frac{2}{r} \pi \theta$$
 (1-2)

$$\theta_{\rm L} = \frac{r}{2\pi} \sin^{-1} \left(-\frac{T_{\rm L}}{T_{\rm H}} \right)$$
(1-3)

式中

T_n 為握持力矩, r為轉子的齒間隔, T_L為負荷力矩,θ指角度的 變化。

當負荷力矩T_L變動時,θ_L角度亦隨之變動,而所產生之角度 誤差,即使在負荷力矩非常穩定的情形下,亦是如此,正反轉所 產生的角度誤差為θ_L的二倍。

圖 1.10 角度 力矩特性

3. 最大握持力矩(holding torque)

步進馬達以額定電流激磁,在馬達輸出軸由外部增加負荷,為 了適應外力負荷加入所產生的角度變位,會產生與外部負荷對立 的力矩,像這樣所產生的最大力矩,稱為握持力矩。外部負荷若 在此值以下的情形,當負荷消除時,轉子將恢復原來的那個位置。

4. 保持力矩(detent torque)

轉子使用永久磁石的步進馬達(PM 型、HB 型的步進馬達), 藉由永久磁石的力,在線圈沒有電流流入(無激磁狀況),也能保 持在現有的位置。為了因應加入外加負荷產生角度變化所產生的 這個扭力,以其最大值表示;其值較激磁最大靜止力矩小很多。

5. 角度的精確度(step angle accuracy)

步進馬達角度的精確度,可以由「『靜止角度誤差(positional accuracy)』、『步進角度誤差 (step position error)』及『磁滯誤差 (hysteresis error)』來判斷,有關描述角度精確度時,可利用這三 項方法來量測。茲再進一步說明如下:

(1) 靜止角度誤差(position accuracy)

從任意點開始,一個脈波接著一個脈波輸入馬達,使轉子旋轉 360°的步數,轉子理論位置及實際位置之最大正值誤差及最大負 值誤差幅度一半,稱為靜止角度誤差;參見圖 1.11 所示。

(2) 步進角度誤差(step position error)

馬達轉動一步的角度和理論上的角度差,其測定的範圍從 0 到 360°,其中最大值被稱為步進角度誤差。步進角度的誤差,比靜 止角度誤差大,故可以從靜止角度誤差的大小,推得步進角度的 誤差大小。一般步進角 1.8°的馬達,產生此誤差的原因乃轉子及 定子的齒及齒距機械精確度及定子線圈漏電阻等。

(3) 磁滯誤差(hysteresis)

步進馬達正轉後反轉,其停止位置時所產生的誤差量。一般 馬達測量磁滯誤差的方法為:從任一位置開始,轉動一圈後,以反 方向再轉動一圈回到原來的位置,測量其差值的最大量,稱為磁 滯誤差。

6. 阻尼(damping)

每一個步進的反應特性如圖 1.12 示,轉子是以1 個步進角度為 中心而作衰減振動,對時間而言,其角度變化如圖 1-13 示。此一傾 斜率稱衰減率,衰減率愈大,穩定時間愈短。衰減率也會由於以下 各條件而增加:

- (1) 由馬達的鐵心材質與磁性電路所產生的渦流電流制動較大時。
- (2) 旋轉子與負載的慣性動量較小時。
- (3) 負載的黏性摩擦較大時。
- (4) 馬達的激磁相數較多時。

圖 1.11 靜止角度誤差

圖 1.12 一步階響應特性

圖 1.13 △0的變化

1.9 步進馬達力矩產生之機構

欲瞭解步進馬達的力矩產生,須從定子和轉子間所動作的磁力關 係式去求出。在此,用模型圖來說明,轉子齒和定子齒間之磁力,如 圖 1.14 所示。當定子線圈激磁時,產生位移量 x 及作用力 F。作用力 F 使的轉子齒向 x = 0 方向移動,兩者間由位置 x = a/2 移動至 x =0 處,此稱 為一維 x 軸方向運動。其磁力 F 如下式^[8]

$$F = d W_m / dx \tag{1-4}$$

W"為定子齒和轉子齒間氣隙所儲存的磁場能量

一般而言,鐵心的磁阻比氣隙還低,因氣隙中儲存著大部分的 能量,其為

$$W_{m} = 1/2 BHV = 1/2\mu_{0} B^{2}V$$
(1-5)

式中,H為磁場的強度 [A/m], μ。為空氣的導磁率[H/m]

B為磁通密度[T], V為氣隙的體積[m³]

因此,固定子齒和回轉子齒間的磁力有下列的關係:

$$F = \mu_0 H \frac{dH}{dx} V = \frac{1}{\mu_0} B \frac{dB}{dx} V$$
(1-6)

由上式可知,磁力F並不是僅考慮磁場強度H或磁通密度B兩 者的大小,尚須將dH/dx(或dB/dx)關係納入計算。因而當磁場能量 和位置x無關時,可得到F=dWm/dx=0,則沒有作用力發生,故知不 會產生移動方向的磁作用力,見圖 1.15 所示。

從圖上可知,如要增加步進馬達力矩,不是只單純的增加磁極 的面積,尚須考慮增加dH/dx(或dB/dx)的磁路設計,方才是更為有 效的改善途徑。

圖 1.14 力矩產生原理

圖 1.15 移動方向磁作用力

步進馬達所需力矩與負載之關係:

一般步進馬達所產生的力矩_T和負載間之關係,用下列的運動 方程式表示出來^[6]。

 $T_{s} = T_{m} + T_{L} = (J_{m} + J_{L}) \cdot d\omega/dt$ (1-7)

式中, T_m 表示步進馬達的發生力矩, T_L 為負載力矩, J_m 為馬達的轉動慣量, J_L 為負載的轉動慣量, $d\omega/dt$ 為角加速度。

當式(1-7)中之負載力矩T_L的符號為負時,表示在步進馬達內之 負載力矩係處於反抗狀態。由於步進馬達在加速與減速間作頻繁的 反覆操作,因而它所需要的力矩必須不斷的變化。

式(1-7)中的T_m是馬達的發生力矩,其與輸入的電流相關。因此, 當減速時,即使是負載力矩減小電流也不會減少。總之,發生力矩T_m 可說是定值。相對地而言,由於其為定電流驅動,故其力矩之變化 不及直流馬達的靈活變動性。更進一步的在定電壓外加電阻法中, 還是需要利用電阻來控制驅動電流,與定電流方式來比較,實用性 較差。

在此再回到(1-7)式。剛才說明過的負載力矩_T, 可以和速度和時間有關係的力矩, (w,t)和無關係的力矩(固定值)作分開處理, 負載力矩可以表示為

$$T_{L} = T_{L1}(w,t) + T_{L2}$$
 (1-8)

步進馬達產生的力矩,相對於轉子位置而言,是以正弦波的形 態呈現出來,其周期由馬達轉子齒數及相數來共同決定,下面以複 合式兩相步進馬達所產生的力矩來說明。

圖 1.16 簡易步進馬達模型圖

圖 1.16 所示為一簡單的步進馬達模型,現以它為對象來推導 力矩公式。當定子上的 A 相激磁時,轉子的第一齒和此 A 相磁極之 位置相對峙。當轉子從原來靜止位置起順時針方向轉動時,產生反 時針方向的力矩。一直到轉子的第一齒與第二齒間的凹槽中心對準 A 相磁極的中心時,此時的順時針方向力矩為零,因而靜止。轉子 再沿順時針方向轉動時,當轉子的第二齒與定子 A 相磁極中心相對 峙時,又會因力矩為零而靜止。在此例中,從第一齒中心到第二齒 中心為一個週期,轉子每轉一圈為五個週期,轉子轉一圈之週期數 為轉子之齒數。現假設轉子的齒數以Z_R表示,最大力矩為T_H,那麽 *A*相所產生的靜止力矩可表示為

$$T_{A} = - T_{H} \sin \left(Z_{R} \cdot \theta \right)$$
(1-9)

若以 A 相磁極的中心為參考基準,則 B 相的力矩將較 A相的力 矩落後 $\pi/2$,且可表示(1-10)式。同樣的, \overline{A} 相及 \overline{B} 相的力矩可分別表 示成(1-11)式及(1-12)式。

$$T_{\rm B} = -T_{\rm H} \sin\left(Z_{\rm R}\theta - \frac{\pi}{2}\right) \tag{1-10}$$

$$T_{\overline{A}} = -T_{H} \sin \left(Z_{R} \theta - \pi \right) \tag{1-11}$$

$$T_{\overline{B}} = -T_{H} \sin\left(Z_{R}\theta - \frac{3\pi}{2}\right)$$
(1-12)

若對同一個模型(圖 1-16)來說,步進馬達各相的靜態力矩圖如圖 1.17 所示。開始時,脈波先輸入至 A 相線圈,然後換相至 B 相線圈,其次Ā相線圈,再其次為B相線圈,最後回到 A 相線圈。如此依序地激磁馬達的各個線圈,那麼轉子便會依順時針方向旋轉。

由上述可知,轉子齒與定子齒間之相位差即相當於一個步進 角,它可用一個機械角₀、表示如下

$$\theta_{\rm s} = \frac{\pi}{2Z_{\rm R}} \quad \text{rad}, \quad \overline{\mathfrak{Q}} \qquad \theta_{\rm s} = \frac{90^{\circ}}{Z_{\rm R}} \tag{1-13}$$

一般 m 相步進馬達,各相的相位差為 π/m rad 電機角度,激磁 第 i 相線圈所產生的力矩為 T_i。如以第 1 相的磁極為參考基準,它其 對應之相位差為(i-1)π/m rad,其可表示成(1-14)式,而其餘各相的 相位差則可表示成(1-15)式。

$$T_{i} = -T_{H} \sin\left(Z_{R} \theta \frac{(i-1)}{m} \pi\right)$$
(1-14)

$$\theta_{\rm s} = \frac{\pi}{{\rm m}Z_{\rm R}} \quad \text{rad or} \quad \theta_{\rm s} = \frac{180^{\circ}}{{\rm m}Z_{\rm R}}$$
(1-15)

由上式中可知,步進馬達的步進角θ_s主要是由相數m及轉子的 齒數Z_R所決定,圖1.18 為各個相之力矩關係圖。 因此,只要能夠增加步進馬達的相數與齒數,即可讓步進角度變小, 提高解析能力。

事實上,步進馬達還是受到機械加工技術方面的約束;若增加 相數的方法,當相數增加時,所使用的輸出電晶體數目也必須增加, 如此,必會增加成本。若增加齒數的方法,固定子,旋轉子的齒寬 幅愈細,加工即愈困難,而且要維持齒與齒之間的氣隙的加工技術 也有限度。

圖 1.17 各相靜態力矩圖

圖 1.18 各相之力矩關係圖

1.10 複合型步進馬達之結構與特性

圖 1.19 為複合型步進馬達的剖面圖;轉子部分有一永久磁場安 置在軸向用以產生單向磁場,永久磁場的磁通路徑如圖 1.19 所示, 轉子被永久磁場磁化成含磁性的南北兩極。在圖 1.20 每一截面段的 轉子齒數為 50,使得轉子的齒距為 360/50 = 7.2。轉子上每一齒都 是一平均一齒距作安排。定子齒的數目為 48,齒距為 360/48 =7.5° 作平均分佈,圖 1.21 為轉子齒與定子齒之間的關係圖。 當 A 相激磁時,定子第 1 齒和轉子第 1'齒相對而定子第 25 齒 和轉子第 26'齒相對;然後激磁 B 相線圈時產生磁極 N 使其和轉子永 久磁鐵 S 極互相吸引,如此第 7 齒及轉子第 7'齒,還有定子第 31 齒及轉子第 32'齒,排列成一直線;按照著 A、B、 Ā、 B 的順時針方 向旋轉 圖 1.21 中得知定子的第 7 齒與轉子的第 7'齒相差的角度(7.5-7.2)× 6 = 1.8°,步進角為 1.8°。然而定子 8 個凸極(salient poles) 且每一凸極上有 5 齒,所以真正的定子齒只有 40 齒,剩餘的 8 齒作 為馬達繞組的場所,它是有名無實的。

複合型步進馬達的一個特點是轉子的構造。如圖 1.22(a)所示; 轉子的內層由回轉軸和其同方向磁化過的永久磁鐵組合而成,回轉 子外層具有很多的凹凸齒的齒車狀突極,由軟磁物質分二個部分來 配置。此種軟磁物質部分,很多情形使用積層矽鋼片,也有 使用燒結合金或塊狀鐵心。

相數加	旋轉子齒數	步進角度 ℓ₅〔°〕	分解能
2	24	3.75	96
	25	3.6	100
	45	2	180
	48	1.875	192
	50	1.8	200
	100	0.9	400
	125	0.72	500
4	50	0.9	400
5	50	0.72	500
	80	0.45	800

表 1-1 複合型步進馬達主要種類

圖 1.19 複合型步進馬達的側視圖

圖 1.20 200 步級步進馬達定子剖視圖

圖 1.21 轉子與定子的關係

圖 1.22(a)複合型步進馬達轉子

圖 1.22(b) A 與 B 齒間關係

如前述所說明的, 複合型是由 PM 型和 VR 型兩種構造而合成 的,因此,它的性質也具備了兩者的特徵,且複合型的轉子構造也 有各式各樣,這些是依照用途、目的等作適宜的分類。複合型轉子 的特徵,有上下二段的齒輪狀轉子,而上下二段的小齒具有 180°(電 氣角)的相位關係,上下齒輪狀轉子之間,並於軸方向上充磁,轉子 一面為 N 極時,那另一面為 S 極。換句話說,上側的齒輪狀轉子的 小齒全部為 N 極,下側的齒輪狀轉子的小齒就全部成為 S 極。圖 1.22(b)的轉子磁極 A 與磁極 B 相互有 180°的相位關係。總之,這個 一面為波峰的場合,那麼另一面則為波谷,如此的配列而成,且依 照在軸方向上充磁的磁鐵, A 側和 B 側則各自成為相異的磁極。在 此所使用凸極轉子皆是使用高透磁率材料。若是圓筒型馬達則是積 層鋼板,如為扁平型構造,大都使用一體成型^[6]。

永久磁鐵所生的磁通如圖 1.19 虛線所示。另一方面定子線圈所 產生磁通則如圖 1.20 虛線所示,線圈的磁通只通過轉子外層磁導率 係數高的軟磁鋼部分,此兩磁通一起作用發生力矩^[9]。

為了更清楚了解其運作原理,圖 1.23 所示為複合型步進馬達之 展開圖,圖的上半部表示永久磁鐵的 S 側截面,下半部表示 N 側截 面。當第一個相繞組激磁時,定子齒與轉子齒位置關係有如圖 1.23 所示;實線表示電流引起的磁通,虛線表示永久磁鐵引起的磁通。

首先只由線圈電流產生的磁場視為不曾產生力矩,參考圖 1.23 所示;如看 S 側截面,對中央極齒的氣隙,磁力線為往右下約 45 度 ()的方向,右端極齒的地方為往右上約 45 度()方向,所產 生的推力(力矩)互相抵消。再看 N 側得同樣的結論。故可知複合型 步進馬達並不利用 VR 型原理產生轉矩^[9,6]。

1.11 論文架構

- 第一章 緒論:說明本論文的研究動機與目的,並對步進馬達的一般特徵、背景、分類、動作原理做概念性的敘述。
- 第二章 建構方程式與學理探討:建構步進馬達運動方程式、學理 分析與二相激磁時的控制與驅動模組的探討。
- 第三章 演算的基礎理論與方法:介紹最小平方法基礎理論及參數 的求解運算、數值分析的基礎與梯度法的基礎理論及演算 過程。
- 第四章 實例演算結果與分析:利用最小平方法、梯度法對各未知 參數求解,並與實際參數值做比較。
- 第五章 結論:總結論文成果,檢討與建議未來之研究方向。

參考文獻

附錄 步進馬達參數量測及做法分析。

第二章 建構方程式與學理探討

2.1 步進馬達控制與驅動

步進馬達不像一般直流馬達或交流馬達一樣,接上電源即能動 作,而為了使其運轉,必須加上驅動設備,包括控制電路、驅動電 路及直流電源電路,如圖2.1所示。

控制電路產生驅動步進馬達的信號包括速度、方向、距離及角 度等指令,吾人可依用途從最簡單的開關電路,到使用複雜的微電 腦場合而加以選定。

圖 2.2 是步進馬達的驅動電路,包括決定激磁順序的順序電路 (sequential circuit),及供應定子線圈激磁電流的電力控制電路;驅 動電路的功用,乃接收由控制電路送出的信號,這些信號經過判斷、 放大然後送到各電路,激磁馬達的定子線圈,使轉子按照既定的順 序和速度轉動,驅動電路和步進馬達的種類(相數)、驅動方式等, 有著很密切的關係,實際應用必須按照用途選擇適當的驅動電路。 一般馬達的製造廠商,大都會提供一些適合各機種的驅動電路與控 制電路。直流電源電路可分為供應積體電路及推動步進馬達兩類。

圖 2.1 步進馬達的驅動設備

圖2.2 驅動電路的方塊圖

2.2 學理推導

步進馬達的動作,是依輸入脈波而作相序激磁切換,使馬 達產生步進動作,此一動作的累積,便成為旋轉運動,因二相 激磁方式扭力較大,價錢也較便宜,又可作為開迴路控制,為 一般較常用的激磁方式,故以下我們只針對此種激磁方式作探 討。

2.2.1 馬達的運動方程式

接著我們來推導步進馬達的運動方程式,假設馬達的機械角位 移為θ,角速度為ω,角加速度為α,則依牛頓運動方程式可以推得 以下式子,參照圖 2.3

圖 2.3 力矩與慣量系統

$$T_{e} + T_{c} + T_{L} - B\omega = J\alpha$$
(2-1)

 T_a 表示由馬達提供之電磁力矩, T_a 為頓轉力矩, T_L 為負載力矩, B為黏滯衰減係數(coefficient of viscous damping), J為轉動慣量(即 馬達慣量加上負載慣量), 而式(2-1)即表示馬達轉動力矩等於馬達提 供之電磁力矩 T_a 、頓轉力矩 T_c 、與摩擦力矩 Bo之和。

由於馬達的振動會隨時間而逐漸消失,因此在分析中必須考慮 黏滯衰減力矩的存在。而在許多情況,衰減力矩的產生是因振動系 統中的某些如水、油或空氣等物質的阻力所造成,在本式子中,衰 減力矩的產生,乃由於軸承的油和馬達的軸摩擦所形成,當馬達的 軸,通過這些潤滑油時,使得運動阻力與物體的速度成正比,此種 情況所產生的力矩亦稱為黏滯衰減力矩(viscous damping torque),此 力矩的大小,如下表示^[10]

$$T_{f} = B\omega \qquad (2-2)$$

而常數 B 稱為黏滯衰減係數,單位為 N·m/(rad/sec),其中衰減力 矩 Bω與馬達的旋轉方向相反。又因式(2-1) Τ.可表為下

$$T_e = K_{tA}i_A + K_{tB}i_B$$
(2-3)

上式(2-3)中, K_{tA} 和 K_{tB} 分別為 A 相和 B 相的力矩常數。換言 之, 二相激磁時總力矩為各相力矩之和, 而 i_A 和 i_B 分別為 A 相和 B 相的相電流。若吾人假設馬達氣隙內磁通為弦波分佈, K_{tA} 和 K_{tB} 和角度也有弦波關係, 且 A 相和 B 相的相位差為, 若角度 θ 用 機械角表示, 則可表示為

$$K_{tB}(\theta) = K_{tB \max} \times \cos Z_r \theta$$
(2-4)
$$K_{tA}(\theta) = K_{tA \max} \times \sin Z_r \theta$$
(2-5)

此處

Z_r為馬達轉子齒數, K_{tAmax}和K_{tBmax}分別表示馬達A相與B相力矩常數 峰值,通常在一般馬達設計上, K_{tAmax}=K_{tBmax}=K_{tmax}, θ_s為馬達步進角。 由於電流與磁通之空間分佈假定為正弦波,因此由式(2-1)、(2-3)、 (2-4)及(2-5)整合出式(2-6),此式即為馬達的運動方程式

$$\alpha = -\frac{B}{J}\omega + \frac{K_{tmax}}{J}[i_A(\sin Z_r(\theta + \frac{\theta_s}{2})) + i_B(\cos Z_r(\theta + \frac{\theta_s}{2}))] + \frac{T_c(\theta)}{J} + \frac{T_L}{J}$$
(2-6)

式(2-6)中,當 θ 為0時,且 i_A =- i_B 時,此位置為馬達二相激磁的 平衡點,T_e合力矩為0,若 i_A = i_B 時,電流同時流入馬達線圈,此時 的馬達有最大力矩。

2.2.2 電流源型驅動器的數學模式

電流源型驅動為目前最常見的驅動方式,並具有如下特點:高 頻響應大大提高、輸出轉矩均勻、能減少(或消除)共振現象、故以 下僅以此作為探討。

(1) 定電流驅動方式

此方式其驅動步進馬達的電流為一常數(constant),圖 2.4 為二 相步進馬達的定電流源基本驅動電路,藉由2個電橋和8個電晶體 組成的驅動控制方式。又可區分為二類,一為線性驅動法,以類比 電流控制的方法來做線性動作,另一種為斬波(chopper)驅動法(或稱 截波驅動法),見圖 2.5。

由於斬波(chopper)驅動法方式,能減輕功率電晶體的負擔,高 速動態響應性能佳,使用範圍較廣,較常受業界採用,圖2.6 為斬 波定電流驅動的電壓與電流波形關係^[8]。

由PNP-NPN型電晶體組合的僑式方式

圖 2.4 定電流源驅動基本電路

圖 2.5 定電流斬波器的基本電路

以下針對圖 2.5 定電流斬波(截波)器,做個探討,由於定電流 斬波器驅動電壓較高,馬達的繞阻回路又不串接電阻,所以電流上 升很快,當到達所需要的數值時,由於取樣電阻反饋控制作用,繞 阻電流可以恆定在一個確定的數值上,而且不會隨馬達的轉速而變 化,從而保證在很大的頻率範圍內,馬達都能輸出一定的轉矩。若 與其他幾種驅動方式(單電壓驅動、雙電壓驅動、高低電壓驅動) 比較,取自電源的能量大幅度降低,因此,此種驅動器有很高的效 率。

這種驅動器的另一優點是減少馬達共振現象的發生,由於馬達 的共振現象的基本原因是能量過剩,而斬波恆流驅動輸入的能量是 自動隨著繞阻電流調節。能量過剩時,續流時間延長,而供電時間 減短,因此可減少能量積聚,所以低頻共振現象可消除,在任何頻 率下,馬達可穩定運轉。

(2) 步進馬達運動的等效電路

當馬達線圈流入電流,使馬達以一些速度開始回轉時,會伴生 與回轉速度成比例的反電動勢E_c,當馬達停止時E_c為0,反之E_c愈 大,表示馬達的回轉數愈高,馬達電流i_A也就愈小,其運動的等效 電路,如圖 2.7。

圖中 E_{AU}表示步進馬達驅動器 A 相的輸入電壓, R_A為步進馬達 A 相線圈電阻, L_A為步進馬達的 A 相電感, M_{AB}表示二相複合型步 進馬達 A 相和 B 相的互感, 依其幾何對稱性的放置, 可以得知其互 感值, 趨近於 0。當馬達加上電壓時, 線圈流入電流, 受到繞線線 圈等電感值的影響,其方程式可如下表示, 由克希荷夫電壓定律 (Kirchhoff's Voltage Law, KVL)可推得, 以下電路以單相激磁(A 相) 做分析:

圖 2.7 馬達運動時 A 相的等效電路

馬達電壓的平衡方程式如下:

$$E_{Au} = i_A R_A + L_A \frac{di_A}{dt} + E_c$$
(2-7)

$$E_{c} = K_{eA}(\theta)\omega \qquad (2-8)$$

當單位使用 MKS 制時

 $K_{eA}(\theta) = K_{tA}(\theta)$

其中, K_{eA}(θ) 為馬達的 A 相的反電動勢常數, 當又考慮 B 相激 磁時, 對 A 相所造成的影響, 則式(2-7)可改為

$$E_{Au} = L_A \frac{di_A}{dt} + M_{AB} \frac{di_B}{dt} + i_A R_A + K_{eA}(\theta)\omega$$
(2-9)

一般電流源的產生,還是要靠改變電壓大小來達成,此回授機制參 考如下:

實際回饋型電流源的控制模型(A 相激磁), 如圖 2.8 所示

圖 2.8 回饋型電流源的控制模型(A 相激磁)

圖 2.9 回饋型電流源的控制模型(B 相激磁)

圖 2.8 中 E_{AU}為驅動器 A 相輸入控制電壓, i^{*}_A為 A 相電流命令 (command), i_A為 A 相實際產生的電流, G_A表示驅動器之比例增 益,其為一常數。 同理,可以類推得到 B 相激磁回饋型電流源的控制模型, 如圖 2.9

(3) 結合驅動電路和馬達的控制模組方塊圖

(a) 單相驅動電路的控制模組

由(2-9)式化成
$$E_{AU} = i_A R_A + L_A \frac{di_A}{dt} + K_{eA} \omega$$
 (2-10)

經 Laplace transform

則

$$(E_{AU} - K_{eA}\omega) = (R_A + sL_A) \times i_A$$

$$E_{AU} = (sL_A + R_A)i_A + K_e\omega$$

$$(E_{AU} - K_e\omega)\frac{1}{sL_A + R_A} = i_A$$

由牛頓運動方程式

$$J\dot{\omega} + B\omega = k_{tA}\dot{i}_{A} + T_{L} \qquad (此處負載 T_{L} 暫忽略)$$

$$\Rightarrow \omega(sJ + B) = K_{tA}\dot{i}_{A}$$

$$\Rightarrow \omega = \frac{K_{tA}}{sJ + B}\dot{i}_{A} \qquad (2-11)$$

經由式(2-10)及式(2-11)分析,繪出單相驅動電路的控制模組方 塊圖,見圖 2.10。 (b) 二相驅動電路的控制模組

在 2 相激磁時,轉矩為 $T_A 與 T_B$ 的向量和 $(T = T_A + T_B)$,加上 負載,其分析方式如上,圖 2.11 為二相驅動電路的控制模組方 塊圖。

圖 2.10 單相驅動電路的控制模組方塊圖

圖 2.11 二相驅動電路的控制模組方塊圖

第三章 演算的基礎理論與方法

3.1 最小平方法

我們擬用最小平方法 (least-square method)來解式(2-6)中步進 馬達的未知參數值(J、 B_m 、 K_{tmax}),此處先介紹其基本概念及應用。

在許多實際問題中,由於所量測參數的誤差,常常使得式(3-1) 方程組有解的條件無法滿足。這時我們可找一個誤差最小的解來替 代,謂之最小平方解(least square solution)^[11-12]。說明細節如下: 通常一個線性方程式,可以寫成以下的矩陣形式

$$y = Ax \tag{3-1}$$

式中

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}, A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

即 y $\in R^{m \times l}$, A $\in R^{m \times n}$, x $\in R^{n \times l}$, m > n ,式(3-2)即表示,有 m 個 方程式,n 個未知數,假設此方程式皆為線性獨立,則利用最小平 方法,我們可以找到一個誤差平方最小的解,假設 E 代表誤差,即 使得 E²(x) = $||Ax - y||^2$ 為最小值,此解²,可表示如下

$$\hat{\mathbf{x}} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{y}$$
(3-2)

有了以上認識,接著我們將分成以下幾個問題探討,試著利用 最小平方法 (least-square method),來求解步進馬達式(2-6)中的各未 知參數值。

40

(1)假設步進馬達步階響應與參數B_m、力矩常數K_{tmax}已知,則當 頓轉力矩 T_c=0、負載力矩 T_L=0 時,求未知參數慣量J之值。

吾人可由式(2-6)得知,此式的自變數為t(時間),我們將改
變為差分表示,即只考慮t = 0,1,2,3,...,KT之離散點之物性,T為
取樣時間,步進馬達為二相激磁全步進,由式(3-1)中得知

$$y = \begin{bmatrix} -B_{m} \frac{\theta(2T) - \theta(T)}{T} + K_{tmax} [i_{A} \sin(Z_{r}(\theta(2T) + \frac{\theta_{s}}{2})) + i_{B} \cos(Z_{r}(\theta(2T) + \frac{\theta_{s}}{2}))] \\ -B_{m} \frac{\theta(3T) - \theta(2T)}{T} + K_{tmax} [i_{A} \sin(Z_{r}(\theta(3T) + \frac{\theta_{s}}{2})) + i_{B} \cos(Z_{r}(\theta(3T) + \frac{\theta_{s}}{2}))] \\ -B_{m} \frac{\theta(4T) - \theta(3T)}{T} + K_{tmax} [i_{A} \sin(Z_{r}(\theta(4T) + \frac{\theta_{s}}{2})) + i_{B} \cos(Z_{r}(\theta(4T) + \frac{\theta_{s}}{2}))] \\ \vdots \\ -B_{m} \frac{\theta(NT) - \theta((N-1)T)}{T} + K_{tmax} [i_{A} \sin(Z_{r}(\theta(NT) + \frac{\theta_{s}}{2})) + i_{B} \cos(Z_{r}(\theta(NT) + \frac{\theta_{s}}{2}))] \\ \end{bmatrix}$$

上式中,乃將角速度以差分表示

$$\omega(t)\Big|_{t=NT} = \frac{\theta(NT) - \theta((N-1)T)}{T} \qquad N = 2,3,4,5....K$$

$$A = \begin{bmatrix} \alpha(2T) \\ \alpha(3T) \\ \alpha(4T) \\ \vdots \\ \alpha(NT) \end{bmatrix} = \begin{bmatrix} \frac{\theta(2T) - 2\theta(T) + \theta(0)}{T^{2}} \\ \frac{\theta(3T) - 2\theta(2T) + \theta(T)}{T^{2}} \\ \frac{\theta(4T) - 2\theta(3T) + \theta(2T)}{T^{2}} \\ \vdots \\ \frac{\theta(NT) - 2\theta((N-1)T) + \theta((N-2)T)}{T^{2}} \end{bmatrix}$$

上式中,乃將角加速度以差分表示

$$\alpha(t)\Big|_{t=NT} = \frac{\theta(NT) - 2\theta((N-1)T) + \theta((N-2)T)}{T^2}$$
 $N = 2,3,4,5\cdots K$

 $x = \begin{bmatrix} J \end{bmatrix}$

再經由式(3-2)之計算,即可求出未知參數慣量Ĵ值。

而一般在實驗室中,上式中的相電流,我們可以藉由電流計 (current probe)量得,轉矩的大小及角度位移,亦可以由轉矩量測 系統(torque meter)與旋轉編碼器(rotary encoder)測得。

(2)若步進馬達步階響應與參數 J、K_{tmax}已知,當頓轉力矩 T_c=0、

負載力矩 T_L=0 時,求未知參數衰減係數 B_m之解。

由式(2-6)中得知,自變數為 t,將其改變為差分表示,即只考慮 在 t = 0,1,2,3,...,KT 之離散點之物性,T 為取樣時間,由式(3-1) 中得知

$$y = \begin{bmatrix} \frac{\theta(2T) - 2\theta(T) + \theta(0)}{T^{2}} - K_{tmax} [i_{A} \sin(Z_{r}(\theta(2T) + \frac{\theta_{s}}{2})) + i_{B} \cos(Z_{r}(\theta(2T) + \frac{\theta_{s}}{2}))] \\ \frac{\theta(3T) - 2\theta(2T) + \theta(T)}{T^{2}} - K_{tmax} [i_{A} \sin(Z_{r}(\theta(3T) + \frac{\theta_{s}}{2})) + i_{B} \cos(Z_{r}(\theta(3T) + \frac{\theta_{s}}{2}))] \\ \frac{\theta(4T) - 2\theta(3T) + \theta(2T)}{T^{2}} - K_{tmax} [i_{A} \sin(Z_{r}(\theta(4T) + \frac{\theta_{s}}{2})) + i_{B} \cos(Z_{r}(\theta(4T) + \frac{\theta_{s}}{2}))] \\ \vdots \\ \frac{\theta(NT) - 2\theta((N-1)T) + \theta((N-2)T)}{T^{2}} - K_{tmax} [i_{A} \sin(Z_{r}(\theta(NT) + \frac{\theta_{s}}{2})) + i_{B} \cos(Z_{r}(\theta(NT) + \frac{\theta_{s}}{2}))] \\ \end{bmatrix}$$

$$A = \begin{bmatrix} -\frac{1}{J}\omega(2T) \\ -\frac{1}{J}\omega(3T) \\ -\frac{1}{J}\omega(4T) \\ \vdots \\ -\frac{1}{J}\omega(NT) \end{bmatrix} = \begin{bmatrix} -\frac{1}{J}\frac{\theta(2T) - \theta(T)}{T} \\ -\frac{1}{J}\frac{\theta(3T) - \theta(2T)}{T} \\ -\frac{1}{J}\frac{\theta(4T) - \theta(3T)}{T} \\ \vdots \\ -\frac{1}{J}\frac{\theta(AT) - \theta(AT) - \theta(AT)}{T} \end{bmatrix}$$

 $\mathbf{X} = \begin{bmatrix} \mathbf{B}_m \end{bmatrix}$

再經由式(3-2)之計算,即可求出未知參數^Â值。

(3)已知步進馬達步階響應與參數 J、B_m,當頓轉力矩 T_c=0、負載 力矩 T_L=0 時,求未知參數力矩常數 K_{tmax}之值。

由式(2-6)中得知,自變數為 t(時間),將其改變為差分表示,即 考慮 t = 0,1,2,3,...,KT 之離散點之物性,T 為取樣時間,由式(3-1) 得知

$$y = \begin{bmatrix} \alpha(2T) + \frac{B_{m}}{J}\omega(2T) \\ \alpha(3T) + \frac{B_{m}}{J}\omega(3T) \\ \alpha(4T) + \frac{B_{m}}{J}\omega(4T) \\ \vdots \\ \alpha(NT) + \frac{B_{m}}{J}\omega(NT) \end{bmatrix} = \begin{bmatrix} \frac{\theta(2T) - 2\theta(T) + \theta(0)}{T^{2}} + \frac{B_{m}}{J}\frac{\theta(2T) - \theta(T)}{T} \\ \frac{\theta(3T) - 2\theta(2T) + \theta(T)}{T^{2}} + \frac{B_{m}}{J}\frac{\theta(3T) - \theta(2T)}{T} \\ \frac{\theta(4T) - 2\theta(3T) + \theta(2T)}{T^{2}} + \frac{B_{m}}{J}\frac{\theta(4T) - \theta(3T)}{T} \\ \vdots \\ \frac{\theta(NT) - 2\theta((N-1)T) + \theta((N-2)T)}{T^{2}} + \frac{B_{m}}{J}\frac{\theta(NT) - \theta((N-1)T)}{T} \end{bmatrix}$$

$$A = \begin{bmatrix} \frac{1}{J} [i_A \sin Z_r(\theta(2T) + \frac{\theta_s}{2}) + i_B \cos Z_r(\theta(2T) + \frac{\theta_s}{2})] \\ \frac{1}{J} [i_A \sin Z_r(\theta(3T) + \frac{\theta_s}{2}) + i_B \cos Z_r(\theta(3T) + \frac{\theta_s}{2})] \\ \frac{1}{J} [i_A \sin Z_r(\theta(4T) + \frac{\theta_s}{2}) + i_B \cos Z_r(\theta(4T) + \frac{\theta_s}{2})] \\ \vdots \\ \frac{1}{J} [i_A \sin Z_r(\theta(NT) + \frac{\theta_s}{2}) + i_B \cos Z_r(\theta(NT) + \frac{\theta_s}{2})] \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{K}_{t \max} \end{bmatrix}$$

再經由式(3-2)之計算,即可求出未知參數K[^]_{tmax}值。

(4)若步進馬達步階響應與參數慣量 J 已知,當頓轉力矩 T_c=0、
 載力矩 T_L=0 時,求未知參數 B_m及 K_{tmax}之解。

由式(2-6)中得知,自變數為時間 t,將其改變為差分表示, 即只考慮 t = 0,1,2,3,...,KT 之離散點之物性,T 為取樣時間,因此 由式(3-1)得知

$$y = \begin{bmatrix} \alpha(2T) \\ \alpha(3T) \\ \alpha(4T) \\ \vdots \\ \alpha(NT) \end{bmatrix} = \begin{bmatrix} \frac{\theta(2T) - 2\theta(T) + \theta(0)}{T^2} \\ \frac{\theta(3T) - 2\theta(2T) + \theta(T)}{T^2} \\ \frac{\theta(4T) - 2\theta(3T) + \theta(2T)}{T^2} \\ \vdots \\ \frac{\theta(NT) - 2\theta((N-1)T) + \theta((N-2)T)}{T^2} \end{bmatrix}$$

$$A = \begin{bmatrix} -\frac{1}{J} \frac{\theta(2T) - \theta(T)}{T} & \frac{1}{J} [i_{A} \sin Z_{r}(\theta(2T) + \frac{\theta_{s}}{2}) + i_{B} \cos Z_{r}(\theta(2T) + \frac{\theta_{s}}{2})] \\ -\frac{1}{J} \frac{\theta(3T) - \theta(2T)}{T} & \frac{1}{J} [i_{A} \sin Z_{r}(\theta(3T) + \frac{\theta_{s}}{2}) + i_{B} \cos Z_{r}(\theta(3T) + \frac{\theta_{s}}{2})] \\ -\frac{1}{J} \frac{\theta(4T) - \theta(3T)}{T} & \frac{1}{J} [i_{A} \sin Z_{r}(\theta(4T) + \frac{\theta_{s}}{2}) + i_{B} \cos Z_{r}(\theta(4T) + \frac{\theta_{s}}{2})] \\ \vdots & \vdots \\ -\frac{1}{J} \frac{\theta(NT) - \theta((N-1)T)}{T} & \frac{1}{J} [i_{A} \sin Z_{r}(\theta(NT) + \frac{\theta_{s}}{2}) + i_{B} \cos Z_{r}(\theta(NT) + \frac{\theta_{s}}{2})] \\ \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{B}_{\mathrm{m}} \\ \mathbf{K}_{\mathrm{t\,max}} \end{bmatrix}$$

再經由式(3-2)之計算,即可求出未知參數 $\hat{B}_m \mathcal{D} \hat{K}_{tmax}$ 之值。

(5)假設步進馬達步階響應與參數B_m已知,當頓轉力矩 T_c=0、負載力矩 T_L=0時,求未知參數J及 K_{tmax}之解。

由式(2-6)中得知,自變數為 t(時間),將其改變為差分表示,即只 考慮 t = 0,1,2,3,...,KT 之離散點之物性,T 為取樣時間,因此由 式(3-1)得知

$$y = \begin{bmatrix} -B_{m}\omega(2T) \\ -B_{m}\omega(3T) \\ -B_{m}\omega(4T) \\ \vdots \\ -B_{m}\omega(NT) \end{bmatrix} = \begin{bmatrix} -B_{m}\frac{\theta(2T) - \theta(T)}{T} \\ -B_{m}\frac{\theta(3T) - \theta(2T)}{T} \\ -B_{m}\frac{\theta(4T) - \theta(3T)}{T} \\ \vdots \\ -B_{m}\frac{\theta(4T) - \theta(3T)}{T} \\ \vdots \\ -B_{m}\frac{\theta(NT) - \theta((N-1)T)}{T} \end{bmatrix}$$

$$\begin{split} & \left[\begin{matrix} \frac{\theta(2T) - 2\theta(T) - \theta(0)}{T^2} & -i_A \sin Z_r(\theta(2T) + \frac{\theta_s}{2}) + i_B \cos Z_r(\theta(2T) + \frac{\theta_s}{2}) \\ \frac{\theta(3T) - 2\theta(2T) - \theta(T)}{T^2} & -i_A \sin Z_r(\theta(3T) + \frac{\theta_s}{2}) + i_B \cos Z_r(\theta(3T) + \frac{\theta_s}{2}) \\ \frac{\theta(4T) - 2\theta(3T) - \theta(2T)}{T^2} & -i_A \sin Z_r(\theta(4T) + \frac{\theta_s}{2}) + i_B \cos Z_r(\theta(4T) + \frac{\theta_s}{2}) \\ \vdots & \vdots \\ \frac{\theta(NT) - 2\theta((N-1)T) - \theta((N-2)T)}{T^2} & -i_A \sin Z_r(\theta(NT) + \frac{\theta_s}{2}) + i_B \cos Z_r(\theta(NT) + \frac{\theta_s}{2}) \\ x = \begin{bmatrix} J \\ K_{tmax} \end{bmatrix} \end{split}$$

再經由式(3-2)之計算,即可求出未知參數Ĵ及K_{tmax}之值。

(6) 若步進馬達步階響應與 $K_{t_{max}}$ 已知,當頓轉力矩 $T_c=0$ 、負載力矩 $T_L=0$ 時,求未知參數 J 及 B_m 之解。

由式(2-5)中得知, 自變數為 t(時間), 將其改變為差分表示, 即只考慮 t = 0,1,2,3,...,KT 之離散點之物性, T 為取樣時間, 因 此由式(3-12)得知

$$V = \begin{bmatrix} K_{t \max} [i_A \sin(Z_r(\theta(2T) + \frac{\theta_s}{2})) + i_B \cos(Z_r(\theta(2T) + \frac{\theta_s}{2}))] \\ K_{t \max} [i_A \sin(Z_r(\theta(3T) + \frac{\theta_s}{2})) + i_B \cos(Z_r(\theta(3T) + \frac{\theta_s}{2}))] \\ K_{t \max} [i_A \sin(Z_r(\theta(4T) + \frac{\theta_s}{2})) + i_B \cos(Z_r(\theta(4T) + \frac{\theta_s}{2}))] \\ \vdots \\ K_{t \max} [i_A \sin(Z_r(\theta(NT) + \frac{\theta_s}{2})) + i_B \cos(Z_r(\theta(NT) + \frac{\theta_s}{2}))] \end{bmatrix}$$

$$A = \begin{bmatrix} \alpha(2T) & \omega(2T) \\ \alpha(3T) & \omega(3T) \\ \alpha(4T) & \omega(4T) \\ \vdots & \vdots \\ \alpha(NT) & \omega(NT) \end{bmatrix} = \begin{bmatrix} \frac{\theta(2T) - 2\theta(T) + \theta(0)}{T^2} & \frac{\theta(2T) - \theta(T)}{T} \\ \frac{\theta(3T) - 2\theta(2T) + \theta(T)}{T^2} & \frac{\theta(3T) - \theta(2T)}{T} \\ \frac{\theta(4T) - 2\theta(3T) + \theta(2T)}{T^2} & \frac{\theta(4T) - \theta(3T)}{T} \\ \vdots \\ \frac{\theta(4T) - 2\theta(3T) + \theta(2T)}{T^2} & \frac{\theta(4T) - \theta(3T)}{T} \\ \frac{\theta(4T) - \theta(3T) - \theta(1T)}{T} \\ \frac{\theta(4T) - \theta(1T) - \theta(1T)}{T^2} \\ \frac{\theta(1T) - 2\theta(1T) - \theta(1T) - \theta(1T)}{T^2} \\ \frac{\theta(1T) - \theta(1T) - \theta(1T)}{T} \\ \frac{\theta(1T) - \theta(1T) - \theta(1T) - \theta(1T) - \theta(1T)}{T} \\ \frac{\theta(1T) - \theta(1T) - \theta(1T) - \theta(1T) - \theta(1T)}{T} \\ \frac{\theta(1T) - \theta(1T) - \theta(1T) - \theta(1T) - \theta(1T) - \theta(1T)}{T} \\ \frac{\theta(1T) - \theta(1T) - \theta(1T)$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{J} \\ \mathbf{B}_{\mathrm{m}} \end{bmatrix}$$

再經由式(3-2)之計算,即可求出未知參數Ĵ及Bm 之值。

若從式(2-6)細看步進馬達的動作,我們可將步進馬達的控制視 其隨輸入頻率而運轉,所產生的轉矩也近似線性,事實上,要進一 步利用步進馬達,必須瞭解其微細的動作。也就是說,步進馬達隨 著輸入脈波而連續作步進動作,此種旋轉並不是如直流馬達一樣為 連續時間系的動作,而是屬於離散時間系的動作。若欲在此瞭解其 微細的情況。可由式(2-6)將步進馬達的走步時間採離散動作;而且 離散時間微分,是使用有限差分法(Finite Difference Method),簡稱 為FDM。

差分法的使用乃利用數值方法求解,以便於計算出所需要的參 數值,就原理上來講,是將一個連續性區域,劃分成有限數目的小 區域,再用一組代數方程來代替微分方程或積分方程,然後求其解。 差分用法如下:

•
$$y(t) \mid_{t=kT} = \frac{y(kT) - y(k-1)T}{T}$$
, $k = 1, 2, 3 \cdots$

有限差分法,是解數值方法的一種技巧,它可將解域(solution domain)劃分成有限個數目的離散點,並用一組差分方程(difference equation),來代替偏微分方程組。因此,所求得之解並非是精確無 誤的,而是近似的結果,然而如果所挑選的各個離散點,彼此監視 非常靠近時,那麼解答中,所出現的誤差,即可能消除到某種可接 受的程度以內。

47

3.2 數值分析的基礎

首先由只含有一個變數且沒有限制條件的極值說起^[14]。 若 f: $\Re \rightarrow \Re$ 且 max f(x)存在。為了方便起見,假設在某一區間[a,b] 上,f(x)為絕對凹函數。因此在[a,b]上有一局部極大點 x^* ,此時,若 $a < x < x^*$,則 f'(x)>0,曲線為上升。若 $x^* < x < b$,則 f'(x)<0,曲線為下 降。因此可令

 $\underline{\mathbf{x}} = \mathbf{a} , \ \mathbf{x} = \mathbf{b} , \ \mathbf{x}' = \frac{\underline{\mathbf{x}} + \overline{\mathbf{x}}}{2} , \ \mathbf{B} \mathbf{x} \mathbf{f}'(\mathbf{x}')$ 若 f'(x') ≥ 0 , 令 $\underline{\mathbf{x}} = \mathbf{x}'$, 若 f'(x') ≤ 0 , 則令 $\overline{\mathbf{x}} = \mathbf{x}'$ 到此 , 則 $\overline{\mathbf{x}} - \underline{\mathbf{x}} = \frac{1}{2}(\mathbf{b} - \mathbf{a})$, 且 $\mathbf{x}^* \in [\underline{\mathbf{x}}, \overline{\mathbf{x}}]$

即包含極點 x^* 的區間長度已經比原來的區間[a,b]長度小了一半。接著再令 $x' = \frac{\underline{x} + \overline{x}}{2}$,如此繼續下去,直到 $\overline{x} - \underline{x}$ 的長度小於所能容許的長度為止。

我們可以把上面的步驟略述如下:

- (1) 先定出一個可容許的誤差程度ε。
- (2) 接著先找出兩點 \underline{x} 及 \overline{x} 使得 f'(\underline{x})>0, f'(\overline{x})<0。
- (3) 令 $x' = \frac{x+x}{2}$,並求f'(x')
- (4) 若 f'(x') ≥ 0, x=x', 而x 不變,如果 f'(x') ≤ 0,則令
 x=x', 而x 不變。
- (5) 繼續上面的步驟,直到 $\bar{x} \underline{x} \le 2\epsilon$ 時為止,此時 $x' \underline{x} \le \epsilon$ 且 $\bar{x} - x' \le \epsilon$ 。故 x^* 不論是在區間 $[\underline{x}, x']$ 內或在 $[x', \overline{x}]$ 內,均可得到 $|x'-x^*| < \epsilon$,此時的x',即為所求的極點 x^* 之近似值。

上面所談的,利用中點規則(midpoint rule),求x*之近似值之方 稱為 Bolzano 搜尋方法(Bolzano search plan)。而且要利用到微分, 所以為分一定要存在才行。

接著討論直接搜尋法(direct search method)或分枝搜尋法 (dichotomous search method)

當我們確知 f(x)在[a, b]上有極點。我們以極大點加以討論,首 先找出對稱於 a, b 的兩點 x₁, x₂滿足

(1) $x_1 < x_2$ (2) $x_2 - a = b - x_1$ (3) $= x_2 - x_1$

此時區間[a, x₂], [x₁, b]在區間[x₁, x₂]上重疊, 我們分別求出 f(x₁) 及 f(x₂)。則

(a)若 f(x₁)>f(x₂),則 x^{*}介於 a 於 x₂之間,此時令 b= x₂,再重複上面 的步驟。

(b)若 f(x₁)<f(x₂),則 x^{*}介於 x₁於 b 之間,令 a= x₁,重複上面的步驟。
(c)若 f(x₁)=f(x₂),則 x^{*}介於 x₁於 x₂之間,令 a= x₁, b= x₂,重複上面的步驟。

在操作上面的疊代法之前,先令 為一固定值,通常要比 容許的誤差度要小,當 設定之後,則不難求出

 $x_1 = a + \frac{b - a - \Delta}{2}$, $x_2 = a + \frac{b - a + \Delta}{2}$

一直重複上面的步驟,直到 $b-a \le 2\varepsilon$ 時為止, ε 為所能容忍的誤 差度,當 $b-a \le 2\varepsilon$,令 $x' = \frac{1}{2}(a+b)$ 可當作 x^* 之近似值。

3.2.1 疊代法的概念

疊代法是一種重要的逐次逼近方法,它透過某個公式反覆校正 根的近似值,使之逐步精確化,最後得到滿足精度要求的結果。其 基本原理如下:

已知方程 f(x)=0的一個初始近似根後,可以用簡單疊帶法使這個根逐步精確化,一直到滿足我們所要求的精確度為止。其具體做法如下:

首先將給定的方程

$$\mathbf{f}(\mathbf{x}) = \mathbf{0} \tag{3-3}$$

改寫成等價形式

$$\mathbf{x} = \boldsymbol{\varphi}(\mathbf{x}) \tag{3-4}$$

然後以根的初始近似值, x_0 (或者在根所在的區間[a,b]上任取 一點 x_0)代入式(3-4)的右端, 算得 $x_1 = \varphi(x)$ 。一般說來, $x_1 \neq x_0$ 。再把 x_1 代入式(3-4)的右端,得到 $x_2 = \varphi(x_1)$,如此繼續做下去,一般地有 $x_{n+1} = \varphi(x_n)$,這樣就得到一個近似根的序列

 $\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3, \cdots, \mathbf{X}_n, \cdots$

如果我們事先給定的精確度為ε,實際上這個過程是有限的,判 斷過程的結束條件為

$$\left|\mathbf{x}_{n+1} - \mathbf{x}_{n}\right| = \varepsilon \tag{3-5}$$

最後就可以得到滿足精確度要求根的近似值 x_{n+1}。

3.3 梯度法的基礎理論

線性代數方程組的另一類解法 - 梯度法。這種方法從理論上講 屬於直接法,但是在實際計算過程中,由於不可避免地會出現捨入 誤差,因此常常作為疊代法來使用,對於高階方程組更是如此,當 方程組的階數很高時,大部分只要經過比接數小的多的疊代次數, 就能得到滿足精確度的近似解。

在討論梯度法之前,首先介紹幾個有關矩陣的基本概念,以及 梯度法的基本思想。

3.3.1 對稱正定矩陣、向量的正交與共軛變換

設矩陣

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

中的元素滿足下列關係

 $a_{ii} = a_{ii}$, $i, j = 1, 2, 3, \dots, n$

則稱矩陣 A 為對稱矩陣。也就是說,對稱矩陣中的元素是關於主對 角線對稱的。

對於一個對稱矩陣 A 以及向量 X=(x₁, x₂, ..., x_n)^T, 可以建立 一個二次函數如下

$$F(X) = X^{T}AX = (x_{1}, x_{2}, \dots, x_{n})A \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$
$$= a_{11}x_{1}^{2} + \dots + a_{nn}x_{n}^{2} + 2a_{12}x_{1}x_{2} + \dots + 2a_{n-1}x_{n-1}x_{n}$$

如果對於任意的 X=(x₁, x₂, ..., x_n)^T, 有 F(x)≥0,且只有當 X=(0,0,[…],0)^T時,才有 F(x)≥0,稱矩陣 A 為對稱正定矩陣。 二次函數

 $F(X) = X^{T}AX$

也可以寫成向量的內積形式,即

F(X) = (X, AX)

設有兩個互異的向量

 $X = (x_1, x_2, ..., x_n)^T$ $Y = (y_1, y_2, ..., y_n)^T$

若他們的內積為零,即(X, Y) = 0,則稱向量 X 與 Y 是正交。 對於兩個任意向量 X 和 Y

 $X = (x_1, x_2, ..., x_n)^T$

 $Y = (y_1, y_2, ..., y_n)^T$

如果矩陣 A 與 A^{*}滿足關係 (X, AY) = (A^{*}X, Y)則稱 A^{*}為 A 的共 軛變換。

若 A^{*}=A,則稱 A 是自共軛的。顯然,根據向量內積的定義, 對稱矩陣 A 是自共軛的。即對於任意的向量 X 和 Y,有

(X, AY) = (AX, Y)

其中 A 為對稱矩陣。如果對於向量 X 和 Y 有

(X, AY) = (AX, Y) = 0

則稱 X 和 Y 為 A 共軛正交。

3.3.2 梯度法的作法

如果線性代數方程組 AX=B 的係數矩陣 A 是對稱正定的的,則 梯度法的基本思想可以如下敘述:

對於一個初始向量 X_0 ,依次建立一組向量 P_i 以及數量 α_i ,使得 經過公式

 $X_{i+1} = X_i + \alpha_i P_i$, i = 0, 1, 2... (2-14) 疊代後,得到的疊代值序列

 $X_0, X_1, X_2, X_3, \cdots, X_i, \cdots$

收斂於原方程組的精確解 X*

由此可知,這種方法的關鍵是如何根據係數矩陣 A 的對稱正定 性,逐步建立α,和 P_i。

首先我們建立一個二次函數

 $F(X) = (A(X^* - X), X^* - X)$ (2-15)

顯然由 A 的對稱正定性,有 $F(X) \ge 0$,並且只有當 $X = X^*$ 時,才 有 F(X) = 0,其中 X 即為方程組的精確解,如果用第i+1次的疊代值

 $X_{i+1} = X_i + \alpha_i P_i$,來代替 X,則有

 $F(X_i + \alpha_i P_i) = (A(X^* - X_i - \alpha_i P_i), X^* - X_i - \alpha_i P_i)$

= $F(X_i) - 2\alpha_i (P_i, (A(X^* - X_i)) + \alpha_i^2 (P_i, AP_i))$

在這一步中,利用了 A 自共軛的性質,即

 $(P_i , A(X^* - X_i)) = (A P_i , X^* - X_i)$

同時也利用了內積的交換律,即

 $(P_i, A(X^* - X_i)) = (A(X^* - X_i), P_i)$

其中, $(X^* - X_i)$ 是第 i 次疊代值與精確解的誤差向量, 我們令

 $R_i = A(X^* - X_i)$ 且稱為殘向量,顯然有

 $R_i R_i = A(X^* - X_i) = AX^* - AX_i = B - AX_i$

最後,上述所建立的二次函數就變為

 $F(X_i + \alpha_i P_i) = F(X_i) - 2\alpha_i (P_i, R_i) + \alpha_i^2 (P_i, AP_i)$

現在,我們選取 α_i ,使 $F(X_i + \alpha_i P_i)$ 達到極小值,即 α_i 滿足條件

$$\frac{\partial F(X_i + \alpha_i p_i)}{\partial \alpha_i} = 0$$

$$\alpha_i = \frac{(P_i, R_i)}{(P_i, AP_i)}$$
(2-16)

由此解出

同時,我們還必須尋找一個方向(即向量 P_i),使函數 F(X)在 X_i 點 最快地下降到 X_{i+1} 點。而函數 F(X)在 $X = X_i$ 點的變化率最大的方向是 F(X)在這一點的梯度 (gradient) 即

gradF
$$\left|_{X_1} = \left(\frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2}, \cdots, \frac{\partial F}{\partial x_n}\right)^T \right|_{X_1}$$

綜上所述, 取梯度作為 Pi 而得到的新的新近值

 $X_{i+1} = X_i + \alpha_i P_i$ 的方法即稱為梯度法,也稱為最速下降 法。其中 α_i 的計算公式

> $\alpha_i = \frac{(P_i, R_i)}{(P_i, AP_i)}$ $R_i 為殘向量, 即$ $R_i = B - AX_i$

但在實際應用中,梯度法在某些情況下收斂得很慢,如果更合 理的挑選方向向量 P_i,則只要經過有限步(至多 n 步)疊代後,就可得 到方程組的精確解。

第四章 實例演算結果與分析

經過第三章的學理推導,吾人將在這一章節,舉一些應用實例 來說明這些原理的應用與分析。茲將個人量測步進馬達參數方法與 探討,列於『附錄』。

現假設有一顆二相雙極式(bipolar)複合型步進馬達,其參數值 及驅動器特性,如表 4-1 所示:

步進馬達性質	內 容	單 位
K _{tAmax} (力矩常數/A 相)	0.98×10 ⁻¹	N.m/A
K _{tBmax} (力矩常數/B 相)	0.98×10 ⁻¹	N.m/A
J (慣量)	0.8×10^{-4}	Kg.m ²
B _m (衰減係數)	0.6×10^{-1}	N.m/(rad/sec)
i _A (電流/相)	1 A/phase	А
i _B (電流/相)	1 A/phase	А
T _c (頓轉力矩)	0	N.m
T _L (負載力矩)	0	N.m
Z _r (轉子數目)	50	total teeth of rotor
θ _s (步進角度)	1.8	degree
drive type	constant current type	
phase mode exciting	two phase exciting	

表 4-1 步進馬達參數及驅動器特性

吾人利用式(2-6)在步進馬達相電流為 1A,激磁一步時可以解得 馬達在時間 0~0.1sec 的角位移、角速度及角加速度的動態響應關 係,如圖 4.1 所示,此圖乃在 sampling time 為 0.1 ms 時所計算繪出。

由圖 4.1 中我們發現這顆馬達位移有臨界阻尼的現象,已知馬 達是採用二相激磁方式,其步進角為 1.8 度,由圖 4.1 之角度與時間 關係圖中確實可驗證此結果,因由圖 4.1 之角速度與時間關係圖中 得知在 θ(0) = 0,ω(0) = 0,滿足式(2-6)的初始條件,再由圖 4.1 之 加速度與時間關係圖中也可得知,當時間為零時,在二相激磁時, 初始加速度可由下式子算出:

$$\alpha(0) = \frac{T}{J} = \frac{K_{t_{A \max}} \times \sqrt{2} \times i_{A}}{J} = \frac{0.098 \times \sqrt{2} \times 1}{0.8 \times 10^{-4}} = 1732 \, (rad/s^{2})$$

√2 乃因二相激磁的力矩為一相激磁的√2 倍,如此計算下來,也能吻 合角加速度的初值。考慮位移、速度、加速度間的微分關係,約在 0.004 秒時我們發現角速度最大,而此時加速度確實為零,加速度為 速度微分關係確實存在。

圖 4.1 一步階響應特性曲線

當時間在 0.04 秒時角度已達到穩定狀態時的 1.8 度,如圖 4.1, 此時的角速度亦為零,角速度為角度微分關係亦成立。經由以上的 說明,上述的馬達動態響應為正確的。

由圖 4.1 可知我們所做的模擬動態響應時間只要超過 0.04 秒, 即以後不管是角位移、角速度及角加速度三者將不會再隨時間而變 化。而未來我們要獲得圖 4.1 的結果時,我們必須利用實驗來求得, 因為大部分所購得的步進馬達,並沒有辦法從製造廠商處得到完整 的參數值(或僅能獲得部分參數值)如表(4-1)所列,而此處乃直接利 用式(2-6)來求得圖 4.1 的結果,以代替實驗。

如上所述,假設我們已獲得馬達的角度與時間關係的實驗數 據,我們想僅藉助上述資料,利用最小平方法(least square method), 推估出步進馬達參數 確認是否與表(4-1)參數完全吻合,若兩者相 吻合,未來我們可依馬達的步階響應,即可推得馬達實際的參數值。 由於量測步進馬達步階響應的儀器,擷取資料速度的能力各有不 同。我們亦想瞭解此解析度的不同,對所推估出的馬達參數的影響 為何。接下來我們針對未知參數做討論。

4.1 最小平方法求未知參數

4.1.1 一個未知參數探討

由於步進馬達參數的獲得,一般製造廠商並無法完全提供,現 假設步進馬達有一個未知參數,我們想利用最小平方法,估測此未 知參數值如何,以下求未知參數的估測值,皆利用 matlab 軟體程式 所計算求得。茲說明如下:

1. 假設步進馬達步階響應及參數 $B_m \gtrsim K_{tmax}$ 已知,則當頓轉力矩 T_c

為 0, 負載 T_L為 0時, 求未知參數慣量 J 值之解。 此參數值可經由式(3-1)、(3-2)之解而獲得, 由圖 4.1 我們看出馬達 在 0.04sec 時, 已達到穩定狀態, 所以吾人只探討在 t=0~0.04sec 時

57

的最小平方法收斂的情形。

我們假設取樣時間 T = 0.1ms,可以得出圖 4.2 的結果;圖 4.2 橫軸為估測時間,縱軸為慣量估測值,圖中我們發現慣量估測值在 接近 0.04sec 時已達到飽和。並將真實值與估測值之誤差率,繪之如 圖 4.3。由圖 4.3 我們可以發現,估測時間愈長,慣量的誤差率愈小, 因愈接近於穩定狀態,當時間在 0.04sec 時,慣量的誤差率,已可降 到 3%左右。

由於量測步進馬達步階響應的儀器擷取資料速度的能力各有不同,我們亦想了解取樣時間 T 可以放大到何種程度,還可以有不錯的估測值。我們假設 T₀=0.1ms,以下逐步將取樣時間由 T₀增加到 2T₀、4T₀、8T₀、10T₀,以瞭解慣量 J(inertia) 的誤差率與取樣時間 T 的大小關係,並繪之如圖 4.4。

根據圖 4.4 的結果,當增長取樣時間時,一如預期,發現圖中 所計算慣量的誤差率愈大,故資料擷取速度的能力要愈快愈好,亦 即 sampling time 必須愈短愈好,即愈能逼近我們的實際參數值,愈 能達到所需求。

圖 4.2 慣量與時間的關係

圖 4.3 慣量誤差率分析圖

圖 4.4 慣量誤差率與不同取樣時間分析

 2. 當步進馬達步階響應及參數 J 及 B_m已知,則考慮當頓轉力矩 T_c 為 0,負載 T_L 為 0 時,求未知參數 K_{tmax}(力矩常數)之解。

由式(3-1)、(3-2) 之解得知此未知參數值。圖 4.5 我們可看出馬達在 0.04sec 時,以達到穩定狀態,所以吾人只探討在 t=0~0.04sec 時的 最小平方法收斂的情形。假設取樣時間 T = 0.1ms,可以得到圖 4.5 的結果,發現力矩常數估測值在接近 0.04sec 時已達到飽和。在此並 將真實值與估測值之誤差率繪之,如圖 4.6。

圖 4.6 力矩常數誤差率分析圖

圖 4.7 力矩常數與不同取樣時間誤差率

由圖 4.5 可以發現,估測時間愈長,力矩常數的誤差率愈小, 當時間在 0.04sec 時,力矩常數的誤差率約為 1.2%左右。由於量測 步進馬達步階響應的儀器擷取資料速度的能力各有不同,吾人亦想 了解當取樣時間 T 可以放大到何種程度,還可以得到不錯的估測 值。假設 T₀=0.1ms,而逐步將取樣時間由 T₀增加到 2T₀,4T₀,8T₀、 10T₀,以瞭解力矩常數的誤差率與不同取樣時間 T 的大小關係,並 繪之如圖 4.7。

由圖 4.7 中我們發現對於資料擷取速度愈快愈好,亦即 sampling time 必須愈短愈好,愈能接近我們的實際參數值。

3. 若步進馬達步階響應及參數 J 及, K_{tmax} 為已知, 則當頓轉力矩

 T_c 為0,負載 T_L 為0時,求未知參數 B_m (衰減係數)之值。 同樣的,此參數值可經由式(3-1)、(3-2)而獲得,由圖 4.8 馬達在 0.04sec 時,已達穩定狀態,吾人只探討 t=0~0.04sec 時的最小平方 法收斂的情形。假設取樣時間 T = 0.1ms,可以得圖 4.8 的結果,可 以發現衰減係數估測值在接近 0.04sec 時已達到飽和。在此一併將真 實值與估測值之誤差率繪之,如圖 4.9。

圖 4.8 衰減係數與時間的關係

圖 4.10 衰減係數與取樣時間誤差率

由圖 4.8 可以發現,當時間愈長,衰減係數的誤差率愈小,當時間在 0.04sec 時,衰減係數的誤差率約為 0.5%左右。由於步進馬達步階響應的儀器,擷取資料速度的能力各有不同,吾人將取樣時間由 T₀增加到 2T₀、4T₀、8T₀、10T₀,以瞭解衰減係數的誤差率與不同取樣時間 T 的大小關係,並繪之如圖 4.10。

由圖 4.10 得知資料擷取速度的能力愈快愈好,亦即 sampling time 必須愈短愈好,愈能逼近我們的實際參數值。

上述乃針對一個未知參數做討論,但若有二個未知參數,吾人 亦想利用最小平方法,去探討所計算出的參數值與實驗值之間的差 異程度。 4.1.2 二個未知參數探討

由於一般製造廠商並無法完全提供步進馬達完整參數,現假設 步進馬達參數值有二個未知,我們亦想利用最小平方法,估測出這 二個未知參數值為何,茲說明如下:

1. 若步進馬達步階響應及參數 J 已知,當頓轉力矩 T_c為 0,負載 T_L 為 0時,求未知參數 B_m(衰減係數)及 K_{tmar}(力矩常數)之值為何。

此二未知參數可經由式(3-1)及式(3-2)之解獲得,由圖 4.1 吾人只 探討在 t=0~0.04sec 時收斂的情形。此處取樣時間 T 為 0.1 ms,並假 設 T₀= 0.1 ms,且繪之如圖 4.11(a)(b)

從圖 4.11(a)、(b)中,根據測試結果,我們發現,同時解 $B_m 及$ $K_{tmax} 二個未知參數,比各別解一個未知參數 <math>B_m$ 或 K_{tmax} 的誤差率 大,其誤差率的變化,由衰減係數 B_m 的 0.5%增加到 20.5%。力矩 常數 K_{tmax} 亦由 1.2%增加到 20.1%的誤差,由此可知同時解 $B_m 及$ K_{tmax} 此二個未知參數,所得的估測值誤差將增大。

由於測試步進馬達的步階響應的儀器, 擷取資料速度的能力各 有不同,我們亦想了解取樣時間 T 可以放大到何種程度,其估測值 有何變化,我們假設 T₀=0.1ms,以下逐步將取樣時間由 T₀增加到 2T₀、4T₀、8T₀、10T₀,以瞭解衰減係數與的力矩常數的誤差率與不 同取樣時間 T 的大小關係,並繪之如圖 4.12(a)、(b)。

圖 4.11(a)衰減係數誤差率分析圖

圖 4.12(a) 衰減係數誤差率分析圖

圖 4.12 (b) 力矩常數誤差率分析圖

根據圖 4.12(a)、(b)中可知, 衰減係數誤差率及力矩常數誤差率 皆隨著取樣時間的增加,其誤差亦愈大,由此可知同時求二個未知 參數時,有可能會產生收斂值準確性降低的可能。若比較 B_m或 K_{tmax} 二者參數的估測值,誤差率與 sampling time 大小變化的敏感度亦較 接近,此亦為其特色之一。 若負載力矩 T_L為0, 頓轉力矩 T_c為0, 則當步進馬達步階響應
 及參數 K_{tmax}已知時, 求未知參數 J及 B_m解。

此解亦可經由式(3-1)、式(3-2)之解獲得,由圖 4.13,吾人探討在 t=0~0.04sec 時的最小平方法收斂的情形。取樣時間 T 設為 0.1 ms, 且繪之如圖 4.13(a)、(b)

由圖 4.13(a)、(b)中,根據測試結果,同時解 J 及 B_m二個未知 參數,可以發現與求解一個未知參數的 J 或 B_m, 二者的誤差率非常 相近;其誤差率的變化,對慣量誤差率 3%和衰減係數誤差率的 0.5% 而言,幾乎變化不大,由此可知同時解此二者未知參數,所得的估 測值誤差,與實際的參數值較接近。所以未來在搭配此二者參數同 時求解時,有可能會產生收斂值提高的可能。同樣的,由於測試步 進馬達步階響應的儀器擷取資料速度的能力各有不同,我們亦想了 解取樣時間 T 可以放大到何種程度,還可以有不錯的估測值。我們 假設 T₀=0.1ms,以下逐步將取樣時間由 T₀增加到 2T₀、4T₀、8T₀、 10T₀,以瞭解慣量與的衰減係數的誤差率,與不同取樣時間 T 的大 小關係,並繪之如圖 4.14(a)、(b)。

Damping Bias T=0.1ms

圖 4.13(a) 慣量誤差率分析圖

圖 4.14(b) 衰減係數誤差率分析圖

由圖 4.14(a)、(b)中可知慣量誤差率及衰減係數誤差率,二者皆 隨著取樣時間的增加,其誤差亦愈大,所獲得的參數值亦較不準確。

 已知步進馬達步階響應及參數 B_m,則當頓轉力矩 T_c為 0,負載 力矩 T_L為 0時,求未知參數 J 及 K_{tmax} 解。

由式(3-1)、(3-2)之解而可求得此參數值,從圖 4.15 吾人亦只探討在 t=0~0.04sec 時的最小平方法收斂的情形。設取樣時間 T 為 0.1 ms,由圖中我們可以看出最小平方法所計算出的結果。並將計算所得繪之如圖 4.15(a)、(b)

由圖 4.15(a)、(b)中,根據測試結果,我們發現,同時解 J 及 K_{tmax}二個未知參數值和解一個未知參數值的誤差率,此二者參數誤 差率相差不大,其誤差率的變化,對慣量誤差率 3%增加到 4.6%和 力矩常數誤差率由 1.2%只增加到 1.5%而言,變化不大。

由此可知同時解此二個未知參數,所得的估測值誤差,與實際 的參數值誤差較接近,但此估測值對 sampling time 大小變化,二者 也有一定的差距。

同樣的,由於測試步進馬達步階響應的儀器擷取資料速度的能力各有不同,我們亦想了解取樣時間 T 可以放大到何種程度,還可以有不錯的估測值。我們假設 T₀=0.1ms,以下逐步將取樣時間由 T₀ 增加到 2T₀、4T₀、8T₀、10T₀,以瞭解衰減係數與的力矩常數的誤差 率與不同取樣時間 T 的大小關係,並繪之如圖 4.16(a)、(b)。

圖 4.16 (a) 慣量誤差率分析圖

圖 4.16 (b) 力矩常數誤差率分析圖

由圖 4.16(a)中可知慣量誤差率,隨著取樣時間的增加,其誤差 亦愈大,所獲得的參數值亦較不準確,而圖 4.16(b)力矩常數誤差 率也隨著取樣時間的增加,其誤差率亦愈大。但對力矩常數誤差率 而言,其敏感度變化不大。

4.2 梯度法求未知參數

接著我們利用梯度法(gradient method),求解步進馬達式(2-6)中 的各未知參數值,由於所計算的方程組多,過程又繁瑣,所以藉助 Matlab 軟體來完成梯度法的運算。程式中並設定未知參數的上下邊 界值(bound value),並給予初始值;而圖中所標示的 cost function 即 Error = $\sum_{n=1}^{k} \left\| \theta - \hat{\theta} \right\|^{2}$, θ 是解式(2-6)微分方程(利用 Runge Kutta)所得。

4.2.1 一個未知參數探討

由於一般製造廠商,並無法完全提供步進馬達完整參數,現假 設有一個未知參數,我們想利用梯度法,估測此未知參數值為何。 1. 若吾人可得步進馬達步階響應與參數 B_m、K_{tmax}值,則當頓轉力 矩 T_c=0、負載力矩 T_L=0 時,求未知參數慣量 J 之值。

由式(2-6)得知,其自變數為t(時間),即只考慮t=0,1,2,3,...,KT 之離散點之物性,設T為取樣時間,由圖4.1我們得知馬達在0.04sec 時,已達到穩定狀態,故吾人只探討在t=0~0.04sec 時的梯度法收 斂的情形,設取樣時間T=0.1ms,繪出圖4.17(a)、(b)慣量J與疊代 誤差關係的結果。

圖 4.17 (a)下邊界往上邊界計算慣量

圖 4.17 (b)上邊界往下界線計算慣量

圖 4.17(a)(b)的橫軸表示利用梯度法所計算的疊代次數,縱軸為梯 度法所測得之慣量估測值及誤差值。由於梯度法的運算,必須給予初 始值及邊界值,即上邊界(up bound)和下邊界(down bound)之值,由於 梯度法計算近似值的特殊性關係;於本論文中,一併考慮從上邊界和 下邊界分別計算,未知參數近似值,且列表討論。數值的計算,在 Matlab 程式中設定為有效值十四位。

上式結果,經由電腦計算出慣量J值為0.80002×10⁻⁴ Kg·m²,並 繪圖 4.17(a);計算出慣量J值為 0.799533×10⁻⁴ Kg·m²,並繪圖 4.17(b);由於量測步進馬達步階響應的儀器,擷取資料速度的能力 各有不同。我們亦想了解取樣時間T可以放大到何種程度,還可以 有不錯的估測值。我們假設 T₀=0.1ms,以下逐步將取樣時間由 T₀ 增加到 2T₀、4T₀、8T₀、10T₀,以瞭解慣量 J(inertia) 的誤差與取樣 時間T的大小關係。表 4-2 和表 4-3 為步進馬達在不同取樣時間, 利用梯度法所計算出慣量的近似值。發現在取樣時間到 10T₀時參數 J的估測值範圍與原實際值比較,二者的參數值非常接近。

70

表 4-2 下邊界往上邊界計算慣量

T(ms)	Inertia	Error
0.1	0.80002×10 ⁻⁴	0.31×10 ⁻¹²
0.2	0.800019×10 ⁻⁴	0.15187×10 ⁻⁹
0.4	0.800018×10 ⁻⁴	0.6651×10 ⁻¹⁰
0.8	0.800008×10 ⁻⁴	0.634×10 ⁻¹¹
1	0.800016×10 ⁻⁴	0.2067×10 ⁻¹⁰
- I	0.800016×10	0.2067×10

(不同取樣時間)

表 4-3 上邊界往下邊界計算慣量

(不同取樣時間)

T(ms)	Inertia	Error
0.1	0.799533×10 ⁻⁴	0.170268×10 ⁻⁷
0.2	0.799534×10 ⁻⁴	0.848793×10 ⁻⁷
0.4	0.799542×10 ⁻⁴	0.409286×10 ⁻⁷
0.8	0.799582×10 ⁻⁴	0.170617×10 ⁻⁷
1	0.799194×10 ⁻⁴	0.505876×10 ⁻⁶

2. 假設步進馬達步階響應與參數 J、K_{tmax} 為已知,當頓轉扭 T_c=0、
 負載力矩 T_L=0 時,求未知參數 B_m值。

由圖 4.1 得知馬達在 0.04sec 時,已達到穩定狀態,所以我們探討 t=0~0.04se 時的梯度法收斂的情形,在取樣時間 T=0.1ms,繪出圖 4.18(a)(b)衰減係數與疊代誤差的結果。

圖 4.18(a)下邊界往上邊界計算衰減係數

圖 4.18(b)上邊界往下邊界計算衰減係數

圖 4.18(a)(b)橫軸表梯度法所計算的疊代次數,縱軸分別為梯 度法所得之衰減係數估測值及誤差值;經由電腦計算出衰減係數的 值為 0.60015×10 N·m/(rad/sec) 並繪圖 4.18(a),計算出衰減係數的 值為 0.60008 N·m/(rad/sec),並繪圖 4.18(b)。由於量測步進馬達步 階響應的儀器擷取資料速度的能力各有不同,我們逐步將取樣時間 由 T_0 增加到 $2T_0$ 、 $4T_0$ 、 $8T_0$ 、 $10T_0$ 看其有何影響。

表 4-4 和表 4-5 為步進馬達在不同取樣時間,利用梯度法所計 算的近似值。發現在取樣時間到 10T₀時參數 B_m的估測值範圍與原 實驗值比較,二者的參數值非常接近。

T(ms)	Damping	Error
0.1	0.600115×10 ⁻¹	0.109933×10 ⁻⁸
0.2	0.600116×10 ⁻¹	0.55775×10 ⁻ ⁰
0.4	0.600117×10 ⁻¹	0.28702×10 ⁻⁹
0.8	0.600121×10 ⁻¹	0.15123×10 ⁻⁹
1	0.600123×10 ⁻¹	0.12574×10 ⁻⁹

(不同取樣時間)

表 4-5 上邊界往下邊界計算衰減係數

(不同取樣時間)

T(ms)	Damping	Error
0.1	0.600008×10 ⁻¹	0.588×10 ⁻¹¹
0.2	0.599837×10 ⁻¹	0.110195×10 ⁸
0.4	0.599856×10 ⁻¹	0.28702×10 ⁻⁹
0.8	0.599945×10 ⁻¹	0.3135×10 ⁻¹⁰
1	0.627601×10 ⁻¹	0.627601×10 ⁻⁸
若步進馬達步階響應與參數 J、Bm 可得,當頓轉力矩 T_c=0,負載 力矩 T_L=0時,則未知參數 K_{tmax}值為何。

由圖 4.1 我們得知馬達在 0.04sec 時,已達到穩定狀態,所以只 探討在 t=0~0.04sec 時的梯度法收斂的情形,設取樣時間 T=0.1ms, 繪出圖 4.19(a)(b)力矩常數 K_{tmax}與疊代誤差的結果。

圖 4.19(a) 下邊界往上邊界計算力矩常數

圖 4.19(b) 上邊界往下邊界計算力矩常數

圖 4.19(a)(b)橫軸為梯度法所計算的疊代次數,縱軸分別為梯 度法所計算力矩參數 K_{tmax} 估測值及誤差值。經由電腦計算出力矩 常數值為 0.980005×10⁻¹ N·m/A 並繪圖 4.19(a);計算出力矩常數的 值為 0.980018×10⁻¹ N·m/A, 並繪圖 4.19(b)。

由於量測步進馬達步階響應的儀器, 擷取資料速度的能力各有 不同。而取樣時間的長短,對於我們所欲獲得的資料的準確性影響 甚大,在此我們將取樣時間 T 放大,是否會有不錯的估測值。 此處設 T₀=0.1ms, 並逐步將取樣時間由 T₀增加到 2T₀、4T₀、8T₀、10T₀, 以 瞭解力矩常數 K_{tmax}的誤差率與取樣時間 T 的大小關係。 而表 4-6 及表 4-7 為步進馬達在不同取樣時間,利用梯度法所計算的未知參數近 似值。且發現在取樣時間到 $10T_0$ 時力矩常數 K_{tmax} 的估測值與實驗值 非常的逼近。

上述乃針對求解一個未知參數而言,很明顯的,以梯度法對一 個未知參數求解的運算,所獲得的參數解,可從上述的表中得知, 其與原實際值比較,二者的值非常接近。即使將其取樣時間 T₀ 增加到 $2T_0$ 、 $4T_0$ 、 $8T_0$ 、 $10T_0$ 時,所估算出的參數值與實際的 參數值之間的差異程度,也非常接近,此為對一個未知參數的 探討情形。

T(ms)	Kt	Error
0.1	0.980005×10 ⁻¹	0.85×10 ⁻¹²
0.2	0.980418×10 ⁻¹	0.296641×10 ⁻⁸
0.4	0.980412×10 ⁻¹	0.143908×10 ⁻⁸
0.8	0.980401×10 ⁻¹	0.68296×10 ⁻⁹
1	0.980389×10 ⁻¹	0.51221×10 ⁻⁹

表 4-6 下邊界往上邊界計算力矩常數 表 4-7 上邊界往下邊界計算力矩常數

T(ms)	Kt	Error
0.1	0.980018×10 ⁻¹	0.1080×10 ⁻¹⁰
0.2	0.979541×10 ⁻¹	0.358262×10 ⁻⁸
0.4	0.980982×10 ⁻¹	0.818124×10 ⁻⁸
0.8	0.9790×10 ⁻¹	0.422934×10 ⁻⁸
1	0.97924×10 ⁻¹	0.196592×10 ⁻⁸

4.2.2 二個未知參數探討

一般馬達的製造廠商,並無法完全提供馬達所有的參數;現假設 有一顆步進馬達,其中有二個參數不知道,此時我們想利用梯度法, 估測此二者未知參數值為何。做法說明如下:

 1. 假設步進馬達步階響應及力矩常數 K_{tmax}已知,當頓轉力矩 T_c=0、 負載力矩 T_L=0 時,求未知參數 B_m及慣量 J 之解。

我們由圖 4.1 得知馬達在 0.04sec 時,已達穩定狀態,吾人 只探討在 t=0~0.04sec 時的情形,取樣時間 T=0.1ms,經由電腦 計算繪出圖 4.20(a)(b)衰減係數、慣量 J 與疊代誤差的結果。

圖 4.20(a)(b)中橫軸為梯度法所計算的疊代次數,縱軸分別 為利用梯度法所得衰減係數 B_m 估測值、慣量 J 估測值及誤差近 似值。經由電 腦計算出衰減係數的估測值為 0.599984×10⁻¹ m/(rad/sec)、慣量 J 的估測值為 0.799854×10⁻⁴ Kg·m²,並繪圖 4.20(a); 計算出衰減係數的估測值為 0.600017×10⁻¹ m/(rad/sec)、慣量 J 的估測值為 0.799838×10⁻⁴ Kg·m²,並繪圖 4.20(b)。

由於量測步進馬達步階響應的儀器擷取資料速度的能力各 有不同。我們亦想了解取樣時間 T 可以放大到何種程度,還有不錯 的估測值,設 T₀=0.1ms,以下逐步將取樣時間由 T₀增加到 2T₆ 4T₆ 8T₀、10T₀,以瞭解衰減係數的誤差率,慣量 J 值的誤差率,與取樣 時間 T 的大小關係,表 4-8 和表 4-9 為步進馬達在不同取樣時間, 利用梯度法所計算的近似值。發現在取樣時間到 10T₀時,參數 B_m 的估測值 慣量 J 估測值與原實際值比較,二者的參數值非常接近。

圖 4.20(a) 下邊界往上邊界計算衰減係數及慣量

圖 4.20(b) 上邊界往下邊界計算衰減係數及慣量

T(ms)	Damping	Inertia	Error
0.1	0.599984×10 ⁻¹	0.799854×10 ⁻⁴	0.4741×10 ⁻¹⁰
0.2	0.600002×10 ⁻¹	0.799925×10 ⁻⁴	0.217×10 ⁻¹¹
0.4	0.599981×10 ⁻¹	0.799898×10 ⁻⁴	0.12101×10 ⁻¹⁰
0.8	0.599915×10 ⁻¹	0.79974×10 ⁻⁴	0.9381×10 ⁻¹⁰
1	0.597495×10 ⁻¹	0.79615×10 ⁻⁴	0.57897×10 ⁻⁷

表 4-8 下邊界往上邊界計算衰減係數及慣量

表 4-9 上邊界往下邊界計算衰減係數及慣量

T(ms)	Damping	Inertia	Error
0.1	0.600017×10 ⁻¹	0.799838×10 ⁻⁴	0.3196×10 ⁻¹⁰
0.2	0.600058×10 ⁻¹	0.800133×10 ⁻⁴	0.1672×10 ⁻⁹
0.4	0.600008×10 ⁻¹	0.799506×10 ⁻⁴	0.4407×10 ⁻¹⁰
0.8	0.600162×10 ⁻¹	0.799032×10 ⁻⁴	0.26615×10 ⁻⁹
1	0.599949×10 ⁻¹	0.802508×10 ⁻⁴	0.44973×10 ⁻⁹

 若步進馬達步階響應與衰減係數 B_m已知,當頓轉力矩 T_c=0、負載 力矩 T_L=0 時,求未知參數 J 及力矩常數 K_{tmax}之解。

從式(2-6)得知,其自變數為t(時間),設取樣時間T=0.1ms, 由圖 4.1 我們得知馬達在時間 0.04sec 時,已達到穩定狀態,故吾 人只探討在t=0~0.04sec 時的梯度法收斂的情形,並繪出圖 4.21(a)(b) 力矩常數 K_{tmax}、慣量 J 與疊代誤差的結果。

圖 4.211(a)(b)中橫軸為梯度法所計算的疊代次數,縱軸分別為 利用梯度法所得力矩常數 K_{tmax}估測值、慣量 J 估測值及誤差值。

圖 4.21(a)下邊界往上邊界計算力矩常數及慣量

圖 4.21(b)上邊界往下邊界計算力矩常數及慣量

經由電腦計算出力矩常數的值為 0.980019×10⁻¹ N·m/A, 慣量 J 值為 0.800195×10⁻⁴ Kg·m², 並繪圖 4.21(a);計算出力矩常數 K_{tmax} 的值為 0.979961×10⁻¹ N·m/A, 慣量 J 值為 0.799768×10⁻⁴ Kg·m², 並繪圖 4.21(b)。

由於量測步進馬達步階響應的儀器擷取資料速度的能力各有 不同。我們將取樣時間 T 放大,我們假設 T₀=0.1ms,並逐步將取 樣時間由 T₀增加到 2T₀、4T₀、8T₀、10T₀,以瞭解力矩常數的誤差, 慣量 J 值的誤差,與取樣時間 T 的大小關係,結果發現與原實驗值 比較,二者的參數值非常接近,見表 4-10 及表 4-11。

T(ms)	s) Kt Inertia		Error	
0.1	0.980019×10 ⁻¹	0.800195×10 ⁻⁴	0.34480×10 ⁻¹⁰	
0.2	0.980458×10 ⁻¹	0.798459×10 ⁻⁴	0.599196×10 ⁻⁸	
0.4	0.980321×10 ⁻¹	0.798452×10 ⁻⁴	0.187231×10 ⁻⁸	
0.8	0.980237×10 ⁻¹	0.798484×10 ⁻⁴	0.652640×10 ⁻⁹	
1	0.980157×10 ⁻¹	0.798823×10 ⁻⁴	0.270310×10 ⁻⁹	

表 4-10 下邊界往上邊界計算力矩常數及慣量

表 4-11 上邊界往下邊界計算力矩常數及慣量

T(ms)	Kt	Inertia	Error
0.1	0.979961×10 ⁻¹	0.799768×10 ⁻⁴	0.55230×10 ⁻¹⁰
0.2	0.980176×10 ⁻¹	0.800469×10 ⁻⁴	0.436440×10 ⁻⁹
0.4	0.980023×10 ⁻¹	0.799466×10 ⁻⁴	0.73520×10 ⁻¹⁰
0.8	0.980911×10 ⁻¹	0.800885×10 ⁻⁴	0.316831×10 ^{-∗}
1	0.980760×10 ⁻¹	0.7793469×10 ⁻⁴	0.767639×10 ⁻⁸

 8. 假設步進馬達步階響應及慣量 J 為已知,當頓轉力矩 T_c=0、負載 力矩 T_L=0 時,求未知參數力矩參數 K_{tmax} 及 B_m之解。

由圖 4.1 我們得知馬達在 0.04sec 時,已達到穩定狀態,所以吾 人只探討在 t=0~0.04sec 時的梯度法收斂的情形,此處設取樣時間 T=0.1ms,可以得出圖 4.22(a)(b)力矩常數 K_{tmax}、衰減係數與疊代誤 差的結果。

圖中橫軸為梯度法所計算的疊代次數,縱軸分別為利用梯度法 所得力矩常數 K_{tmax} 估測值、衰減係數估測值及誤差值。經由電腦 計算出力矩常數的估測值為 0.0812661×10⁻¹ N·m/A、衰減係數為 0.0491427×10⁻¹ N·m/(rad/sec) 並繪圖 4.22(a);計算出力矩常數 K_{tmax} 的值為 0.1937 08 N·m/A,衰減係數為 0.12113 N·m/(rad/sec),並 繪圖 4.22(b)。

由於量測步進馬達步階響應的儀器擷取資料速度的能力各有 不同,我們亦想了解取樣時間 T 可以放大到何種程度,還可以有不 錯的估測值。我們假設 T₀=0.1ms,以下逐步將取樣時間由 T₀增加 到 2T₀、4T₀、8T₀、10T₀,以瞭解力矩常數的誤差,衰減係數的誤 差,與取樣時間 T 的大小關係,結果可從表 4-12 中,發現力矩常 數 K_{tmax} 範 圍 在 0.0804~0.0813 N·m/A 變化,衰減係數在 0.0481~0.0491 N·m/(rad/sec)內變化。表 4-13 力矩常數 K_{tmax} 在 0.1925~0.1938 N·m/A 之間變化,衰減係數在 0.1202~0.1211 N· m/(rad/sec)內變化。

由於實際值衰減係數為 0.06 N·m/(rad/sec), 力矩常數為 0.098 N·m/A,由此可知此二者參數值,並未收斂。

圖 4.22(a) 下邊界往上邊界計算力矩參數及衰減係數

圖 4.22(b) 上邊界往下邊界計算力矩參數及衰減係數

T(ms)	Kt	Damping	Error
0.1	0.812661×10 ⁻¹	0.491427×10 ⁻¹	0.200696×10 ⁻⁴
0.2	0.805015×10 ⁻¹	0.486435×10 ⁻¹	0.112002×10 ⁻⁴
0.4	0.804296×10 ⁻¹	0.485644×10 ⁻¹	0.57110×10 ^{-₅}
0.8	0.809663×10 ⁻¹	0.488988×10 ⁻¹	0.26587×10 ⁻⁵
1	0.812940×10 ⁻¹	0.491016×10 ⁻¹	0.203573×10⁵

表 4-12 下邊界往上邊界計算力矩參數及衰減係數

表 4-13 上邊界往下邊界計算力矩參數及衰減係數

T(ms)	Kt	Damping	Error
0.1	0.193708	0.121113	0.107544×10 ^{-₃}
0.2	0.193079	0.120656	0.534376×10 ⁻⁴
0.4	0.192999	0.120691	0.266759×10 ⁻⁴
0.8	0.192563	0.120251	0.132914×10 ⁻⁴
1	0.193818	0.121162	0.10762×10 ⁻⁴

4.2.3 三個未知參數探討

對於以最小平方法求解三個未知參數值,從式(2-6)中得知,由 於三個未知參數,無法利用式(3-1)求得各未知參數值。即無從得知 其值,但若以梯度法求解,仍可預估其未知參數值,其解法同前。

若已知步進馬達步階響應,當頓轉力矩 $T_c=0$ 、負載力矩 $T_L=0$ 時,求未知參數力矩常數 K_{tmax} 、衰減係數 B_m 及慣量 J 之解。

同樣的,由圖 4.1 我們得知馬達在 0.04sec 時,已達到穩定狀態。 所以吾人只探討在 t=0~0.04sec 時的梯度法收斂的情形,此處設取樣 時間 T=0.1ms,得出圖 4.23(a)(b)力矩常數 K_{tma}、衰減係數、慣量及 與疊代誤差的結果。圖中橫軸為梯度法所計算的疊代次數,縱軸分 別為利用梯度法所得力矩常數 K_{tmax} 估測值、衰減係數估測值、慣量 J 估測值及誤差值。

經由電腦計算出力矩常數的估測值為 0.993285×10⁻¹ N·m/A、衰 減係數為 0.608115×10⁻¹N·m/(rad/sec)、慣量 J 值為 0.810558×10⁻⁴ Kg· m², 並繪圖 4.23(a);計算出力矩常數 K_{tmax}的值為 0.118931N·m/A、 衰減係數估測值為 0.728169×10⁻¹ N·m/(rad/sec)、而慣量 J 的估測值 為 0.970898×10⁻⁴Kg·m2,並繪圖 4.23(b)。

由於量測步進馬達步階響應的儀器擷取資料速度的能力各有不同,我們亦想了解取樣時間 T 可以放大到何種程度,還可以有不錯的估測值。在此假設 T₀=0.1ms,並逐步將取樣時間由 T₀增加到 2T₀、 4T₀、8T₀、10T₀,以瞭解力矩常數的近似值,衰減係數的近似值, 及慣量的近似值與取樣時間 T 的大小關係。

表 4-14 及表 4-15 為步進馬達在不同取樣時間,利用梯度法所計算的近似值。其力矩常數 K_{tmax}、衰減係數及慣量 J 值的大小,可由表中得知。

圖 4.23 (b) 上邊界往下邊界計算力矩常數、 衰減係數及慣量近似值

表 4-14 下邊界往上邊界計算力矩常數、

T(ms)	Kt	Damping	Inertia	Error
0.1	0.993285×10 ⁻¹	0.608115×10 ⁻¹	0.810558×10 ⁻⁴	0.11831×10 ⁻⁹
0.2	0.9859 ×10 ⁻¹	0.603113 ×10 ⁻¹	0.810149×10 ⁻⁴	0.147711×10 ⁻⁷
0.4	0.980679 ×10 ⁻¹	0.600523 ×10 ⁻¹	0.798667×10 ⁻⁴	0.68506×10 ⁻⁹
0.8	0.930916 ×10 ⁻¹	0.570048 ×10 ⁻¹	0.761055×10 ⁻⁴	0.32605×10 ⁻⁹
1	0.874487 ×10 ⁻¹	0.53491 ×10 ⁻¹	0.717783×10 ⁻⁴	0.238927×10 ⁻⁸

衰減係數及慣量近似值

表 4-15 上邊界往下邊界計算力矩常數、

T(ms)	Kt	Damping	Inertia	Error
0.1	0.118931	0.728169×10 ⁻¹	0.970898×10 ⁻⁴	0.3193×10 ⁻¹⁰
0.2	0.124876	0.763608 ×10 ⁻¹	0.103523×10 ⁻⁴	0.605187×10 ⁻⁷
0.4	0.122267	0.748844 ×10 ⁻¹	0.997829×10 ⁻⁴	0.9147×10 ⁻⁹
0.8	0.126883	0.77696 ×10 ⁻¹	0.102877×10 ⁻⁴	0.262424×10 ⁻⁸
1	0.122603	0.750628 ×10 ⁻¹	0.100256×10 ⁻⁴	0.14801×10 ⁻⁹

衰減係數及慣量近似值

第五章 結論與未來研究方向

5.1 結論

由於步進馬達是一種很典型的機電磁產品,若要探討其完整的 靜態特性及動態特性。對設計參數的選定,須從機械的幾何結構、 電子電路與磁性材料的性質、耦合效應等做全盤性的綜合考量,工 程可說非常艱鉅、繁瑣,所以一般的學者,大都只針對步進馬達的 某些特質去鑽研,如馬達結構分析,電腦磁路模擬分析 等,皆希 望能提昇馬達使用上的效益,以達到盡善盡美的境界。

本論文提出步進馬達參數分析之技巧,利用量測步進馬達的角 位移與電壓電流與時間的關係,並利用最小平方法和梯度法二種方 式,去估測步進馬達的未知參數值。

從實例演算中,可以發現估測一個未知參數時,最小平方法所 估測的誤差率和實際值比較,以取樣時間在 0.1ms 來看,慣量誤差 率約為 3%,力矩常數誤差率約為 1.2%,衰減係數誤差率約為 0.5%,而梯度法所估測的一個未知參數值時,無論以上邊界或下邊 界設為初始值,其所計算的參數值的誤差皆非常接近於實際值。所 以可見梯度法所估測的一個未知參數值優於最小平方法,未來若對 一個未知參數求值時,建議優先考慮採用梯度法計算,以獲得較能 逼近實際參數值。

估測二個未知參數時,最小平方法所估測的誤差率和實驗值比 較,以取樣時間在 0.1ms 來觀察;衰減係數和力矩常數分別約為 20.5%與 20.1%,慣量及衰減係數所估測的誤差率分別約為 3%與 0.5%,而慣量和力矩常數分別約為 4.6%與 1.5%,可見當估測二個 未知參數時不同的參數組合估測,可能會產生大的誤差率,於此建 議用最小平方法估測二個未知參數時,儘可避免衰減係數和力矩常 數搭配做未知參數的估測,以免產生更大的誤差。

而以梯度法估測二個或三個未知參數時,由於初始值的設定, 可能再找全域(global value)的極小值時,陷入局域(local value)的 極小值,由於步進馬達的參數,除衰減係數不易得知,因有其困難 度,故在一般的步進馬達型錄上,皆很少記載,其餘或可查得。

在本論文的實例演算中,以梯度法估測二個未知參數時,若對 二個未知參數的邊界設定上下邊界範圍,當以梯度法估測未知參數 值的近似時,發現以上邊界和下邊界分別做梯度法的初始值時,所 得的結果可能與實際的參數值會有所差異,這可從表 4-12 及表 4-13 看出,所以慎選一個初始值,是吾人所應注意的。一般說來,如果 知道步進馬達參數的範圍,以梯度法做運算,仍然可以得到接近實 驗參數值的解,參照表 4-8 至表 4-11,從表中可以看出從上邊界和 下邊界分別計算未知參數,皆能找到與實驗值的接近答案。雖然如 此,梯度法仍有其侷限及遭遇到的困難,茲列舉如下:

- 富初始值不同,吾人可能找到全域的極小值,也可能陷入局小 值,要多試一些初始值,才能找到真正的極小值。若初始值設 不好,極小值可能找不到。
- 2. 當問題愈複雜時,用梯度法可能較費時,才能找到所要的值。
- 沒有適當的初始值,就找不到真正的極小值,也沒有好方法選 定正確的初始值。

由於考慮各家製造的步進馬達量測步階響應的儀器, 擷取資料 速度的能力各有不同, 在本文中亦將取樣時間加長, 讓使用者在估 測馬達的未知參數時, 亦能有所參照。而往後在研發新型步進馬達 時, 更可借助馬達參數分析的特質, 藉由電腦的模擬, 找出步進馬 達的動態響應特性, 以避免失步, 減少振動, 以便往後能在研發新 型馬達時提出修正及改良的對策, 而提昇步進馬達的最佳化需求。

5.2 未來研究方向

本論文雖已針對二相複合型步進馬達的有關參數,做過模擬 與分析,並以最小平方法及梯度法去估測未知參數值;但由於步進 馬達是機、電、磁特性結合的複雜機構,對於參數的選定更應作全 面性的考量,在此提出以下幾點研究方向。

- 針對上述梯度法的困難點,未來的研究能應用基因遺傳演算法 (Genetic Algorithms),來尋求最佳化的解題。
- 對於設計參數的選定,應從機械的幾何結構、電子電路與磁性 材料的性質、耦合效應等做全面考量。
- 步進馬達加上負荷運轉,若能事先結合參數做電腦模擬,將能 於運轉過程中,改善其缺失,進而提昇其性能。
- 改善馬達的驅動電路特性、兼顧暫態狀況下的性能,若能事先 靠模擬規劃出振動最小,時間最短的驅動命令,將可減少使用者 trial and error 的時間,而能做最佳化處理。

步進馬達的重量輕,體積小、效率高以及成本要低是未來趨勢 而這些若能對馬達參數有更深一層的認識與瞭解,相信研發一個較 完美的步進馬達是指日可待的。

參考文獻

- 1. 賴耿陽, "精密小馬達基礎及應用", 復漢出版社, 81年10月。
- J.D.Wale and C.Pollock, "Hybrid Stepping Motors And Drives", Power Engineering Journal, February 2001.
- S.L Ho, H. L.Li, W.N.Fu, and H, C. Wong, "A Novel Approach to Circuit-Field-Torque Couple Time Stepping Finite Element Modeling of Electric Machines", IEEE, 2000.
- Yoshihiro Kawase and Koji suwa, "3-D Dynamic Transient Analysis of Stepping Motor for Wristwatch by Finite Element Method (FEM)", IEEE, 1998.
- 5. 許溢适,"步進馬達原理與應用",全華出版社,83年5月。
- 6. 張書彰,"複合型步進馬達充磁座磁路模擬分析之研究",輔 仁大學物理研究所碩士論文,90年。
- 7. 陳喜隸,"步進馬達應用技術",全華出版社,87年7月。
- 陳連春,"步進馬達原理與活用要訣",建興出版社,89年6
 月。
- 9. 葉明財, "步進馬達活用技術", 全華出版社, 86年11月。
- 10. 葉思武,"定位控制技術的基礎回路",復文書局,76年5月。
- 11. 陳哲光、陳嘉文, "線性代數與動態系統", 全華科技 83 年 7月。

- 12. Strang,G, "Linear algebra and its applications", Harcourt Brace Jovanovich, California,1988
- 13. 徐士良,"數值方法常用演算法",儒林圖書有限公司,80 年 11 月。
- 14. 楊錦洲,"管理數學",華泰書局,73年3月。

附 錄 步進馬達參數量測方法與探討

* 實驗量測儀器(工研院磁性技術組實驗室提供) *

一、量測步進馬達電阻及電感值

對象物:日本東方馬達,型號:PH266-1

規格如下:

激磁最大靜止力矩	電 流	電 壓	線圈阻抗	轉子慣量
(kg.cm)	(A/相)	(V)	(Ω)	(g.cm ²)
6	1.2	6	5	135

1. 使用三用電表量馬達線圈電阻 (R_a)/相

單極性馬達驅動迴路

	A COM	Ā COM	A Ā	B COM	\overline{B} COM	<i>B B</i>
電阻()	5.3	5.3	10.2	5.3	5.3	10.2

以三用表量測馬達的線圈 R_a/相電阻時,由於 A 相和 B 相線圈 電阻的阻值是一樣的,所以在做 RLC meter 量測電阻及電感值時只 選擇 A 相做量測。量測的電阻與規格中電阻有誤差,乃本身線圈的 電阻誤差及量測的環境因素而定。

2. 使用 RLC meter

Tektronix TM502A Type : AM503A current probe amplifier

(1) 電壓為 1 伏特,頻率為 10 Hz (RLC meter 顯示為 11.72 Hz)

觀察步進馬達電阻電感值之變化如下:

	А СОМ	Ā COM	A Ā	В СОМ	BCOM	$B - \overline{B}$
電阻()	5.05	5.0	10.1	*	*	*
電感(mH)	10.164	10.1	42.68	*	*	*

(2) 電壓1伏特,頻率為100Hz 觀察步進馬達電阻及電感值之變化。

	A COM	Ā COM	A Ā	В СОМ	BCOM	$B - \overline{B}$
電阻()	5.36	5.30	11.56	*	*	*
電感(mH)	10.05	9.98	41.34	*	*	*

(3) 電壓 1 伏特, 頻率為 1000Hz 觀察步進馬達電阻及電感值之變化。

	A COM	Ā COM	A Ā	В СОМ	BCOM	$B - \overline{B}$
電阻()	14.46	14.35	40.37	*	*	*
電感(mH)	9.14	9.21	33.48	*	*	*

二、 使用 RLC meter 量測步進馬達的慣量

使用 RLC meter 電壓為 1 伏特,頻率為 1000Hz) 觀察步進馬達電 阻及電感值變化為何。

	A COM	Ā COM	A Ā	В СОМ	BCOM	B
						В
電阻()	14.205	14.211	42.34	*	*	*
r 1 J	14.304	14.596	41.513	*	*	*
ر 2 ا	14.315	14.442	42.866	*	*	*
電感(mH)	8.895	8.948	33.567	*	*	*
r 1 J	8.98	9.14	33.316	*	*	*
ر 2 آ	8.97	9.057	33.67	*	*	*

(1) 使用慣量 200 gcm² 圓形碟片加在馬達軸上(馬達激磁未換相時) 探討慣量對電阻電感的影響。

(2) 使用慣量 400 gcm² 圓形碟片加在馬達軸上(馬達激磁未換相時) 探討慣量對電阻電感的影響。

	A COM	Ā COM	A Ā	В СОМ	\overline{B} COM	<i>В</i> <u></u> <i>B</i>
電阻()	14.401	14.125	42.67	*	*	*
۲1 ا	14.35	14.37	41.66	*	*	*
電感(mH)	8.97	8.91	34.04	*	*	*
<mark>1</mark> ا	8.98	9	33.329	*	*	*

(3) 使用慣量 600 gcm² 圓形碟片加在馬達軸上(馬達激磁未換相時), 探討慣量對電阻電感的影響。

	A COM	Ā COM	A <i>Ā</i>	В СОМ	BCOM	$B - \overline{B}$
電阻()	14.64	14.227	42.198	*	*	*
r1 J	14.195	14.412	42.529	*	*	*
電感(mH)	9.065	8.94	33.49	*	*	*
ر 1 '	8.92	9.0	34.291	*	*	*

以上(1)~(3)項表格內所表示「1」,「2」為對步進馬達的 軸施以微調時,所量測的電阻及電感值。

三、電流參數值量測及探討

(1) RLC meter 量測電阻與頻率的關係

一般馬達的信號線,通常為多股細銅絲絞合成的圓形截面導體 並包覆以絕緣材料而成。而頻率越高的信號在導體中越是趨於表面 傳輸,信號電流的密度也越大;因為高頻電流只在導體的表面上流 動,相對低頻電流來說電阻值會增大,這就是通常所說的"集膚效 應"或"趨膚效應"(Skin effect)。進一步的研究還發現,導體的 電導率越大即電阻率越小,這種集膚效應也越明顯,為減少信號傳 輸時的損耗,人們往往通過提高導體材料的的純度或加大導電材料 的截面積以使單位以使單位長度的電阻愈小愈好。由以上認知,上 述 RLC meter 所量測的電阻值(如上所述,一、二)即會受到頻率 高低而影響。

(2) 鐵損

電動機定子與轉子之鐵心,因為飽和所造成的磁滯損及轉子與 定子間的空氣間隙(air gap)所造成的磁阻損失,鐵芯損失的大小與外 加電壓的平方成正比,此部份約佔總損失的29%。

(3) 渦流損

當電流通過定子線圈時,所產生的磁場切割馬達本身的材料, 使材料上產生渦流(eddy current),渦流經過材料時便會造成損失, 此部份約站總損失的11%左右。渦流損也是鐵損之一。鐵損是固定 損失,與負載大小無關,僅與外加電壓的大小有關,而銅損則隨負 載大小而變化 若要提高馬達的效率,則必須從減少損失上下手,高 效率馬達就是藉著減少馬達內部的銅損與鐵損,來提高本身的效 率。高效率馬達係,採用較粗的導線,以減少電阻損失,並在製造 過程中增加鐵心的面積以及採用高透磁性材料,以減少一次電流,

此外縮小了定子與轉子間的間隙,經由以上方法,所製出的馬達效 率約比傳統馬達高出2 4%左右。

四、RLC meter 量測電感之探討

上述利用 RLC meter 所量出來的電感值在 A -- COM、 Ā -- COM 及與 A – Ā 之間的值約差四倍,其間關係以右圖為例,討論 N 匝線圈 與 2N 匝線圈電感量的關係:

當步進馬達的定子繞上 2N 匝線圈數時,其電感量即成為 原來的 四倍

$$L = \frac{(2N)^2 Au}{\ell}$$

所以在利用 RLC meter 量測電阻及電感值時,經由以上的分析 討論,其所測的值應是可信的。

五、相電流波形及驅動器提供馬達相電壓波形大小

測量儀器如下:

- (1) current probe amplifier: Tektronix TM502AType : AM503A
- (2) scope: Tektronix TDS724A
- (3) function generator: HP33120A 15MHz function/arbitrary

waveform generation

利用上述儀器而由 function generator 輸入頻率,可以測得相電流 波形及驅動器提供馬達相電壓波形大小,並調整輸入頻率大小,以得 到一個穩定的電流值。

測量結果如下:

1. 頻率在 2Hz 時, 測得電流波形及驅動器提供馬達相電壓波形。

Volt Waveform

2. 頻率在 5Hz 時,測得電流波形及驅動器提供馬達相電壓波形。
 Freq:5Hz
 VoltWaveform

Freq:2Hz

頻率在 10Hz 時,測得電流波形及驅動器提供馬達相電壓波形。
 Freq:10Hz
 Volt Waveform

4. 頻率在 100Hz 時, 測得電流波形及驅動器提供馬達相電壓波形。

Freq:100Hz

Volt Waveform

5. 頻率在 200Hz 時,測得電流波形及驅動器提供馬達相電壓波形。

Freq:200Hz

6. 頻率在 500Hz 時, 測得電流波形及驅動器提供馬達相電壓波形。

六、反電動勢 K。參數量測及探討

測量儀器如下:

- (1) scope: Tektronix TDS724A
- (2) current probe amplifier: Tektronix TM502A Type:AM503A
- (3) ONO SOKKI 公司的量測系統 PV-7300/PK SERIES
- (4) RK-820 旋轉編碼器(rotary encoder)

量測儀器是採用 ONO SOKKI 公司的系統 PV-7300/PK SERIES 和 RK820- SERIES 來量測步進馬達;帶動步進馬達及檢測器是 PV-7300;其主要量測機器為轉矩檢測器(torque detector),當 RK-820 旋轉編碼器(rotary encoder)加上時,將可精確測量步進馬達的靜態特 性,握持轉矩、保持轉矩、 $\theta-T$ 。

- * 如何測得 K_e:
- 1. 先測得 holding torque 及激磁相電流

利用公式 T= $K_t \times i$ 求出。(在 MKS 制時 $K_t = K_e$)

- 2. 使用扭力板手測出 (配合 PV7300 儀器) holding torque 值。
- 3. 使用儀器(current probe Amp)可測得激磁相電流。
- 4. 間接求出參數

利用 unit step response 配合本論文中二種方法間接求出參數 B_m, T₀, K_t 之值。

1000 RPM & 2000 RPM 時的 KE 量測值								
rnm (頞定)	rnm(實際)	Frequency	Amplutude	Pk-Pk	Ke	Torque		
Ipin (留在) Ipi	ipin(貞际)	(Hz)	(V)	(V)	(Volt-sec/rad)	(g-cm)		
1000	995	826.44	21.2	22	1033.47	-40.2		
2000	1996	1653.62	42.4	43.2	1035.5	-54.7		

* 1000 RPM & 2000 RPM 時的 K_e 量測值

表一 Stepping Moter R,L,Q 量測值

頻率 (Hz)	R	L	Qdr
200	5.472	6.712	1.54
375	5.926	6.722	2.675
500	6.36	6.726	3.528
1000	8.592	6.581	4.813
1500	11.52	6.449	5.272
2000	15.156	6.32	5.248
3000	20.82	5.81	5.234

圖一 頻率與電阻值的關係

Note :

- (1) 量馬達直流電阻為 5.3 歐姆
- (2) 頻率為 500Hz 時用手轉動轉子,電阻的變化量約為

5.8 ~ 6.4 , 電感約為 6.3 mH ~ 6.9 mH 變化。

(3) 頻率為 1000Hz 時用手轉動轉子, 電阻的變化量約為

8.5 ~9 , 電感約為 6.4 mH ~ 6.8 mH 變化。

(4) 從圖一可以發現,當步進馬達的驅動頻率愈高時,馬達的線圈電阻愈大。