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Forward/Reverse Velocity and
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of Lower-Mobility Parallel
Mechanisms
This paper proposes a novel kinematic analysis method for a class of lower-mobility
mechanisms whose degree-of-freedom (DoF) equal the number of single-DoF kinematic
pairs in each kinematic limb if all multi-DoF kinematic pairs are substituted by the single
one. For such an N-DoF �N�6� mechanism, this method can build a square �N�N�
Jacobian matrix and cubic �N�N�N� Hessian matrix. The formulas in this method for
different parallel mechanisms have unified forms and consequently the method is conve-
nient for programming. The more complicated the mechanism is (for instance, the mecha-
nism has more kinematic limbs or pairs), the more effective the method is. In the rear part
of the paper, mechanisms 5-DoF 3-R�CRR� and 5-DoF 3-�RRR��RR� are analyzed as
examples. �DOI: 10.1115/1.2429698�

Keywords: kinematic influence coefficient, lower-mobility, parallel mechanism,
Jacobian, Hessian
Introduction
According to the number of degrees of freedom �DoF�, parallel
echanisms �PMs� can be classified into three classes: lower-
obility PM �DoF�6�, 6-DoF PM, and redundant PM �DoF
6�. In recent years, the research point has been evolving from

he 6-DoF PM to the lower-mobility PM for that the latter has
impler structure. In this period, many lower-mobility PMs are
roposed �1–13�.

Among these mechanisms, there is a class of mechanisms
hose number of single-DoF kinematic pairs in every kinematic

imb equals the DoF of the mechanism �N�, such as 3-DoF: planar
-RRR, 3-RPR, spherical 3-RRR; 4-DoF: ten mechanisms pro-
osed by Li and Huang �7�; 14 by Kong and Gosselin �8�; 4-
PPR by Li �9�; 5-DoF: 3-RCRR, 3-RTRR �10� by Huang and Li;
-RRRRR by Fang and Tsai �11�; 30 mechanisms by Li et al. �12�;
6 by Kong and Gosselin �13�, etc.

Conventional Jacobian for an N-DoF PM �N�6� is not a
quare matrix �6�N�, which adds obstacles to kinematic model-
ng. Based on the kinematic influence coefficient �KIC� method
or 6-DoF PMs �14,15�, Yan and Huang proposed virtual mecha-
ism principle �VMP� for lower-mobility PMs �16�. The VMP can
uild a square Jacobian �6�6� matrix and cubic Hessian �6�6
6� matrix by adding several virtual single-DoF kinematic pairs

ntil every kinematic limb of PM has six single-DoF kinematic
airs. Rates of these virtual kinematic pairs have to be zero in
rder to guarantee that kinematic solutions of the virtual mecha-
ism are equivalent to that of the initial one. Schilling �17� used
he generalized inverse to work out joint rates in terms of the
esired velocity in Cartesian space. Di Gregorio �5,18,19� ana-
yzed the kinematics of several lower-mobility PMs through vec-
or relationship. Considering the kinematic constraint, Joshi and
sai �20� employed the reciprocal screw in Jacobian analysis
here the Jacobians of constraints and actuations are used to build
square �6�6� overall Jacobian. Fang and Tsai �21� presented the
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reverse velocity analysis for lower-mobility serial mechanism
with the reciprocal screw. Hernández �22� built a velocity equa-
tion based on a geometric matrix. Li et al. �23� derived a 5�5
Jacobian for some 5-DoF 3R2T PM in a special coordinate frame
and one component of the velocity vector has to be zero. Hitoshi
et al. �24� applied Lie algebra to the reverse kinematic analysis
forserial manipulators. Lu �25� solved velocity and acceleration of
parallel manipulators with 3–5 linear driving limbs with computer
aided design �CAD� variation geometry.

In this paper, a novel method is proposed for forward/reverse
kinematic analysis including not only the velocity but also accel-
eration analysis for the class of mechanisms mentioned above.
Jacobian and Hessian matrices for an N-DoF PM �N�6� in this
method are N�N and N�N�N matrices, respectively. Then the
order of the Jacobian is less than 6 and its determinant of the
Jacobian expressed by symbol variables is simpler than that of the
Jacobian whose order is 6. This method can solve not only the
case illustrated in Ref. �23�, but also the case where all six com-
ponents of the velocity vector as well as the acceleration vector
are nonzero.

Moreover, the difficulty in achieving a velocity equation with
the conventional method depends on the complexity of the geo-
metrical relationship for a mechanism. The more complicated the
mechanism is �for example, the mechanism has more limbs and
kinematic pairs�, the more complex the geometrical relationship
is. So it is harder to achieve the velocity relationship with the
conventional method if the mechanism is more complicated.
Comparing with the traditional method, the method in this paper
has the same difficulty for different mechanisms. So, the more
complicated the mechanism is, the more effective the method is.

2 Kinematic Modeling
In the KIC method for a 6-DoF PM �14,15,26�, Jacobian and

Hessian matrices for a PM are built on the basis of Jacobian and
Hessian matrices for limbs. In this study, Jacobian and Hessian

matrices for a lower-mobility PM are also built in the same way.

07 by ASME Transactions of the ASME
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2.1 Velocity Analysis

2.1.1 Forward Velocity Analysis for a Limb. For an N-DoF
N�6� PM, one kinematic limb can be considered as a serial
echanism. At first, substitute several single-DoF kinematic pairs

or every multiple-DoF kinematic pair. For example, replace a
ylindrical pair with a revolute and a coaxial prismatic pairs.
ince every kinematic limb has N single-DoF kinematic pairs as
entioned above, the forward velocity equation for the ith kine-
atic limb is �14�

V = J�i��̇�i� �1�
here

V = ��x �y �z �px �py �pz �T �2�

J�i� = �S”1
�i� S”2

�i�
¯ S”N

�i� � �3�

�R6�1 denotes the velocity vector of the movable platform;
�i��R6�N the Jacobian for the ith kinematic limb; �̇�i��RN�1

he velocity vector of the ith kinematic limb; �x the angular ve-
ocity component of the movable platform around the x axis; �px
he linear velocity component of the point P on the movable plat-
orm along the x axis; and S” j

�i��R6�1 the unit screw of the jth
inematic pair in the ith kinematic limb.

Since the J�i� is a 6�N matrix, the rank of J�i� is N generally.
raw out any N independent rows from J�i� and form a nonsin-
ular square matrix named Jl

�i�, where

Jl
�i� = �

J j1:
�i�

J j2:
�i�

�
J jN:

�i�
� � RN�N �4�

jx:
�i� denotes the �jx�th row of the matrix J�i� �1� jx�6�. Draw out

components from velocity vector V corresponding to the rows
rawn out from J�i� and build a new vector Vl

Vl = �V1 V2 ¯ VN �T � RN�l �5�
hen it is obvious that

Vl = Jl
�i��̇�i� �6�

2.1.2 Reverse Velocity Analysis for a Limb. The reverse form
f Eq. �6� is

�̇�i� = �Jl
�i��−1Vl �7�

2.1.3 Reverse Velocity Analysis for Mechanism. The general-
zed input velocity vector for the lower-mobility PM is

q̇ = �q̇1 q̇2 ¯ q̇N �T = ��̇ j1

�i1� �̇ j2

�i2�
¯ �̇ jN

�jN� �T �8�

here �̇ j
�i� is the velocity of the jth kinematic pair in the ith

inematic limb.
According to Eq. �7�

�̇ j
�i� = �Jl

�i�� j:
−1Vl �9�

here �Jl
�i�� j

−1 denotes the jth row of the inverse matrix of Jl
�i�.

hen the reverse velocity equation for the mechanism is

q̇ = Jls
−1Vl �10�

here

Jls
−1 = �

�Jl
�i1�� j1:

−1

�Jl
�i2�� j2:

−1

�
�Jl

�iN�� j :
−1
� � RN�N �11�
N

ournal of Mechanical Design
2.1.4 Forward Velocity Analysis for Mechanism. The reverse
form of Eq. �10� is as follows

Vl = Jlsq̇ �12�

Generally, the rank of the matrix J�i� is N, so the other 6-N rows
of J�i� can be linearly expressed by N rows which belong to Jl

�i�. In
other words, there exists

Jk:
�i� = aJ j1:

�i� + bJ j2:
�i� + ¯ + fJ jN:

�i� �13�

where Jk:
�i� denotes the row of J which does not belong to Jl;

coefficients a ,b , . . . , f are functions of position variables ��i� and
exists

�a,b, . . . , f� = Jk:
�i��

J j1:
�i�

J j2:
�i�

�
J jN:

�i�
�

−1

�14�

Let Vk denote the component of V which does not belong to Vl.
In other words, V is the combination of Vl and 6-NVks, and

Vk = Jk:
�i��̇ = �aJ j1:

�i� + bJ j2:
�i� + ¯ + fJ jN:

�i� ��̇ = aV1 + bV2 + ¯ + fVN

�15�

So given Vl, Vk, and V are derivable.
Moreover, since Vl=Jlsq̇=Jl

�i��̇�i�

�̇�i� = �Jl
�i��−1Jlsq̇ �16�

Let gl
�i�= �Jl

�i��−1Jls�RN�N, then

�̇�i� = gl
�i�q̇ �17�

2.2 Acceleration Analysis

2.2.1 Forward Acceleration Analysis for a Limb. The forward
acceleration equation for the ith kinematic limb is �14�

A = J�i��̈�i� + �̇�i�T
H�i��̇�i� �18�

where

A = ��̇x �̇y �̇z �̇px �̇py �̇pz �T � R6�1 �19�

A denotes the acceleration vector of the movable platform; and
H�i��R6�N�N denotes the Hessian matrix for the ith kinematic
limb. It is a three-dimensional vector which has six layers and
each layer is an N�N matrix. Figure 1 illustrates the structure of
Hessian matrix for a 5-DoF mechanism, which has six layers and
each layer is a 5�5 matrix. �̈�i��RN�1 denotes the acceleration
vector of the kinematic pairs in the ith kinematic limb; �̇x denotes
the angular acceleration component of movable platform around

˙

Fig. 1 Hessian for a 5-DoF mechanism
the x axis; and �px denotes the linear acceleration component of

APRIL 2007, Vol. 129 / 391
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he point P on the movable platform along the x axis. The jth
omponent of A is

A j = J j:
�i��̈�i� + �̇�i�T

H j::
�i��̇�i� �20�

here H j::
�i��RN�N denotes the jth layer of the matrix H�i�.

Draw out those N layers of H�i� corresponding to the rows
rawn out in Eq. �4� and form a cubic matrix named Hl

�i�

Hl
�i� = �

H j1::
�i�

H j2::
�i�

�
H jN::

�i�
� � RN�N�N �21�

Similar to Eq. �5�, let

Al = �A1 A2 ¯ AN �T � RN�1 �22�

hen

Al = Jl
�i��̈�i� + �̇�i�T

Hl
�i��̇�i� �23�

2.2.2 Reverse Acceleration Analysis for a Limb. The reverse
orm of Eq. �23� is

�̈�i� = �Jl
�i��−1�Al − �̇�i�T

Hl
�i��̇�i�� �24�

2.2.3 Reverse Acceleration Analysis for Mechanism. The gen-
ralized input acceleration vector for the lower-mobility PM is

q̈ = �q̈1 q̈2 ¯ q̈N �T = ��̈ j1

�i1� �̈ j2

�i2�
¯ �̇ jN

�iN� �T �25�

here �̈ j
�i� is the input acceleration of the jth kinematic pair in the

th kinematic limb. According to Eq. �24�,

�̈ j
�i� = �Jl

�i�� j:
−1�Al − �̇�i�T

Hl
�i��̇�i��

= �Jl
�i�� j:

−1Al − �̇�i�T
��Jl

�i�� j:
−1 * Hl

�i���̇�i� �26�

here the sign “*” denotes a generalized scalar product �15,27�.
he generalized scalar product of two matrices X�Rm�n and Y
Rn�p�p had been defined as follows

�X * Y�k:: = �
l=1

n

XklYl:: � Rp�p k = 1,2, . . . ,m �27�

here X*Y�Rm�p�p; Xkl denotes the entry located at the kth
ow and lth column of the matrix X.

Based on Eqs. �17�, �25�, and �26�, the following equation can
e derived

q̈ = �Jls�−1Al − �
�q̇Tgl

i1
T

���Jl
�i1�� j1:

−1 * Hl
�i1���gl

i1q̇�

�q̇Tgl
i2
T

���Jl
�i2�� j2:

−1 * Hl
�i2���gl

i2q̇�

�

�q̇Tgl
�iN�T

���Jl
�iN�� jN

−1 * Hl
�iN���gl

�iN�q̇�
� �28�

Then the reverse acceleration equation for the mechanism is

q̈ = Jls
−1Al − q̇THls

−1q̇ �29�

here

Hls
−1 = �

gl
�i1�T

��Jl
�i1�� j1

−1 * Hl
�i1��gl

�i1�

gl
�i2�T

��Jl
�i2�� j2

−1 * Hl
�i2��gl

�i2�

�

gl
�iN�T

��Jl
�iN�� jN:

−1 * Hl
�iN��gl

�iN�
� �30�

2.2.4 Forward Acceleration Analysis for Mechanism. The re-

erse form of Eq. �29� is

92 / Vol. 129, APRIL 2007
Al = Jlsq̈ + q̇THlsq̇ �31�
where

Hls = Jls * Hls
−1 � RN�N�N �32�

Furthermore, Hessian is the derivative of Jacobian about the
position parameter ��i�, namely

H�i� =
�J�i�

���i� �33�

where ��i�= ��1
�i� �2

�i�
¯ �N

�i� �T. Let Hk::
�i� denote the kth layer of

H�i� which does not belong to Hl shown in Eq. �21�. Then

Hk::
�i� =

��Jk:
�i��

���i�

=
��aJ j1:

�i� + bJ j2:
�i� + ¯ + fJ jN:

�i� �

��
= a

��J j1:
�i��

���i� + b
��J j2:

�i��

���i� + ¯

+ f
��J jN:

�i� �

���i� +
�a

���i� �J j1:
�i�� +

�b

���i� �Ji2:
�i�� + ¯ +

� f

��
�J jN:

�i� �

= �a b ¯ f � * Hl
�i� +

��a b ¯ f �
���i� Jl

�i� �34�

According to Eqs. �13� and �34�, Jk:
�i� and Hk::

�i� are derivable,
then Ak and A are derivable, where Ak denotes the component of
A does not belong to Al.

From the deduction above, it is obvious Eqs. �10�, �12�, �29�,
and �31� are the kinematic model of forward/reverse velocity and
acceleration for the lower-mobility PM and they are built by Eqs.
�6�, �7�, �23�, and �24�, respectively. Based on the uniform equa-
tions, the method is convenient for programming. For the forward
analysis: DoF, mechanism parameters, and velocities/accelerations
of actuators are the inputs of the program. The velocity/
acceleration of the movable platform is the output of the program.
For the reverse analysis: DoF, mechanism parameters, and
velocity/acceleration of movable platform are the inputs of the
program. The velocities/accelerations of actuators are the outputs
of the program.

Note that the velocity and acceleration of any link in the PM
can also be achieved. The detailed method will not be introduced
here since it is similar to the kinematic influence coefficient
method for a 6-DoF PM �15,26�.

3 Mechanism Example

3.1 5-DoF 3-R(CRR)

3.1.1 Mechanism Description and Mobility Analysis. The base
and movable platforms are connected by three kinematic limbs,
each with three revolute joints and one cylindrical pair �12�. Both
platforms are equilateral triangles. After kinematic equivalent sub-
stitution, each R�CRR� limb can be represented with five single-
DoF kinematic pairs as R1�P2R3R4R5�. The pairs in parentheses
intersect at one common point. The first joints �R1� of three kine-
matic limbs are perpendicular to the base platform. All other ki-
nematic pairs’ axes intersect at one point called rotation center.
Rotations of three cylindrical pairs and the first revolute joints
�R1� in the first and second kinematic limbs are chosen as input
motions. The origin of the fixed coordinate frame O-xyz is located
at the center of the base platform; y axis passes through the points
PA; z axis is perpendicular to the base platform and upward �see
Fig. 2�.

According to the screw theory �28�, the screw system of the
first kinematic limb under this structural condition is

S”1 = �0,0,1;PAy,0,0�
S”2 = �0,0,0;0,1,0�

Transactions of the ASME
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S”3 = �0,1,0;0,0,0�

S”4 = �l4,m4,n4;0,0,0�

S”5 = �l5,m5,n5;0,0,0� �35�

here S” i and �li ,mi ,ni� denote the unit-screw of the ith kinematic
air and its direction cosine, respectively; PAy denotes coordinate
f point PA on the y axis. Then the reciprocal screw �27� of the
crew system expressed in Eq. �35� is

S” r = �0,0,1;0,0,0� �36�
If one screw denotes motion twist of a body, then its reciprocal

crew denotes the constraint wrench acting on the body. From Eq.
36�, S” r denotes constraint force �namely a constraint wrench with
ero pitch� acting on the movable platform along the z axis. Simi-
arly, the constraint forces from the other two kinematic limbs are
he same with the first limb. Three constraint forces from three
inematic limbs are coaxial and form a “common constraint”
hich constrains the translation along the z axis.
Then, the mechanism rotation center can only translate in a

lane parallel to the base plane and the movable platform can
otate only around the rotation center. In other words, the movable
latform has three rotational freedoms and two translational free-
oms in o-xy plane, respectively. Under finite motion, the con-
traint wrench is the same as Eq. �36�, so it is not an instantaneous
echanism. The number of DoF for the mechanism can also be

erified by the modified G-K criterion �29�

M = d�n − g − 1� + 	f + � − 
 = 5�11 − 12 − 1� + 15 + 0 − 0 = 5

�37�
Then, both numbers of DoF and single-DoF kinematic pairs in

ne limb are five �N=5�.

3.1.2 Velocity Analysis. Since the five degrees of freedom in-
lude three rotational freedoms and two translational freedoms
long x and y axes, let

Vl = ��x �y �z �px �py �T �38�

Jl
�i� = J�1–5�:

�i� �39�

here Vl�R5�1; Jl
�i��R5�5; J�1–5�:

�i� denotes the former five rows

f matrix J�i�. Then its forward and reverse velocity analysis for
he ith kinematic limb corresponding to Eqs. �6� and �7� are
erivable.

Since rotations of three cylindrical pairs and the first revolute
oints �R1� in the first and second kinematic limbs are chosen as
he input motions. So the generalized input velocity vector for the

Fig. 2 Sketch of mechanism 3-R„CRR…
ower-mobility 3-R�CRR� PM is

ournal of Mechanical Design
q̇ = ��̇1
�1� �̇3

�1� �̇1
�2� �̇3

�2� �̇3
�3� �T �40�

where

�̇i
�1� = �Jl

�1��1:
−1Vl

�̇3
�1� = �Jl

�1��3:
−1Vl

�̇1
�2� = �Jl

�2��1:
−1Vl

�̇3
�2� = �Jl

�2��3:
−1Vl

�̇3
�3� = �Jl

�3��3:
−1Vl �41�

So

Jls
−1 = �

�Jl
�1��1:

−1

�Jl
�1��3:

−1

�Jl
�2��1:

−1

�Jl
�2��3:

−1

�Jl
�3��3:

−1
� � R5�5 �42�

Then the forward and reverse velocity analysis for the mecha-
nism corresponding to Eqs. �10� and �12� are derivable.

3.1.3 Acceleration Analysis. Similar with Eqs. �38� and �39�,
let

Al = ��̇x �̇y �̇z �̇px �̇py �T � R5�1 �43�

Hl
�i� = H�1−5�::

�i� � R5�5�5 �44�

where H�1−5�::
�i� denotes five layers from the first one to the fifth one

of H�i�. Then the forward and reverse acceleration analysis for the
limb corresponding to Eqs. �23� and �24� are derivable.

Similar to Eq. �40�, let the generalized input acceleration vector
for the mechanism be

q̈ = ��̈1
�1� �̈3

�1� �̈1
�2� �̈3

�2� �̈3
�3� �T �45�

where

�̈�1�
�1� = �Jl

�1��1:
−1�Al − �̇�1�T

Hl
�1��̇�1��

�̈�3�
�1� = �Jl

�1��3:
−1�Al − �̇�1�T

Hl
�1��̇�1��

�̈�1�
�2� = �Jl

�2��3:
−1�Al − �̇�2�T

Hl
�2��̇�2��

�̈�3�
�2� = �Jl

�2��3:
−1�Al − �̇�2�T

Hl
�2��̇�2��

�̈�3�
�3� = �Jl

�3��3:
−1�Al − �̇�3�T

Hl
�3��̇�3�� �46�

So the reverse acceleration equation for the 3-R�CRR� PM is

q̈ = �Jls�−1Al − q̇THls
−1q̇ �47�

where

Hls
−1 = �

gl
�1�T

��Jl
�1��1:

−1 * Hl
�1��gl

�1�

gl
�1�T

��Jl
�1��3:

−1 * Hl
�1��gl

�1�

gl
�2�T

��Jl
�2��1:

−1 * Hl
�2��gl

�2�

gl
�2�T

��Jl
�2��3:

−1 * Hl
�2��gl

�2�

gl
�3�T

��Jl
�3��3:

−1 * Hl
�3��gl

�3�
� �48�

Then, the forward acceleration equation for the 3-R�CRR� PM is

Al = Jlsq̈ + q̇THlsq̇ �49�

where

Hls = Jls * H−1 � R5�5�5 �50�
ls

APRIL 2007, Vol. 129 / 393
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3.1.4 Numerical Example. Let the side length of base platform
bp=0.3 m; the side length of movable platform rmp=0.1 m; both
he angle between vector OPB and OPc and the angle between
ector OPC and OPD be 47.2 deg; the maximum translational
istance for three cylindrical pairs is 0.1 m. At the initial configu-
ation when all five input angles are zero, the rotation center is
oincident with the center of base platform. Now, let the input
ngle of first revolute pair in the first kinematic limb change in the
ange from −15 deg to 15 deg with an angular velocity of 1 rad/s.
he other four actuators are locked. The input accelerations of five
ctuators are assumed to be zero, namely q̇= �1 0 0 0 0 �T and

¨ = �0 0 0 0 0 �T.
According to Eqs. �13� and �34�, all coefficients a ,b , . . . , f are

ero, so the component of linear velocity and acceleration vectors
n the z axis are zero.

Figure 3 shows the locus of the movable platform, where angles
n the figure indicate five different input angles. Figures 4 and 5
how the kinematic atlases including angular and linear velocity
omponents and acceleration components, respectively. From Fig.
, it is obvious that both components of linear velocity and accel-
ration vectors along the z axis vanish, which also confirms that
he mechanism only has two independent translational freedoms.

Fig. 3 Simulation of movable platform motion
Fig. 4 Angular kinematics simulation
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3.2 5-DoF 3-„RRR…„RR…

3.2.1 Mechanism Description and Mobility Analysis. The
movable and base platforms are connected by three identical
limbs each with five revolute joints �13�. Axes of three revolute
joints adjacent to the base platform �R1 ,R2 ,R3� intersect at a
point O1 and the other two �R4 ,R5� intersect at another point O2.
The revolute pairs including R1 in three limbs and R2 in the first
and second limbs are chosen as five input pairs �see Fig. 6�.

Let point O1 be the origin, the z axis perpendicular to the base
platform, and the x axis pass through the center point of base pair
R1. In such a reference coordinate frame, the screw system for the
limb is

S”1 = �1,0,0;0,0,0�

S”2 = �l2,m2,n2;0,0,0�

S”3 = �l3,m3,n3;0,0,0�

S”4 = �l4,m4,n4;O2 � S4�

S”5 = �l5,m5,n5;O2 � S5� �51�

where O2= �xo2 ,yo2 ,zo2� denotes the coordinates of the point O2.
The reciprocal screw of the screw system is a wrench with zero

pitch

S” r = �O2;0,0,0� �52�

whose axis passes through both O1 and O2.
The reciprocal screws of three limbs are the same. So these

constraints exerting on the movable platform form a common con-
straint, which is a wrench with zero pitch constraining the trans-
lational freedom along the line O1O2. So the movable platform
has three rotational and two independent translational freedoms
which can also be verified by modified G-K criterion �29�

M = d�n − g − 1� + 	f + � − 
 = 5�14 − 15 − 1� + 15 + 0 − 0 = 5

�53�

Then, both numbers of DoF and single-DoF kinematic pairs in
one limb are five �N=5�.

3.2.2 Velocity Analysis. In the fixed reference coordinate

Fig. 5 Linear kinematics simulation: „a… parallel mechanism
3-„RRR…„RR…; „b… one „RRR…„RR… limb at a general
configuration
frame O1-xyz, six components of velocity vector for the moving
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latform are nonzero at general configuration as shown in the Fig.
�b�. There are six possibilities to draw five rows from six rows of
�i� to build Jl

�1� Jl
�i� = ��J1:

�i��T,�J2:
�i��T,�J3:

�i��T,�J4:
�i��T,�J5:

�i��T�T

�2� Jl
�i� = ��J1:

�i��T,�J2:
�i��T,�J3:

�i��T,�J4:
�i��T,�J6:

�i��T�T

�3� Jl
�i� = ��J1:

�i��T,�J2:
�i��T,�J3:

�i��T,�J5:
�i��T,�J6:

�i��T�T

�4� Jl
�i� = ��J1:

�i��T,�J2:
�i��T,�J4:

�i��T,�J5:
�i��T,�J6:

�i��T�T

�5� Jl
�i� = ��J1:

�i��T,�J3:
�i��T,�J4:

�i��T,�J5:
�i��T,�J6:

�i��T�T

�6� Jl
�i� = ��J2:

�i��T,�J3:
�i��T,�J4:

�i��T,�J5:
�i��T,�J6:

�i��T�T �54�

Any Jl is valid as long as it is not singular. In this study, the J6:
ill be the quasi-null row when O1O2 is nearly vertical to the
ase platform which will make the Jl quasi-singular. So the Jl
ithout J6: �the first one� is selected in this study. Then

Vl = ��x �y �z �px �py �T �55�

Jl
�i� = J�1–5�:

�i� �56�

here Vl�R5�1; Jl
�i��R5�5. Then its forward and reverse veloc-

ty analysis for the ith kinematic limb corresponding to Eqs. �6�
nd �7� are derivable.

Input velocity vector for the 3-�RRR��RR� PM is

q̇ = ��̇1
�1� �̇2

�1� �̇1
�2� �̇2

�2� �̇1
�3� �T. �57�

Fig. 6 Sketch of 3-„RRR…„RR…
nd reverse Jls is
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Jls
−1 = �

�Jl
�1��1:

−1

�Jl
�1��2:

−1

�Jl
�2��1:

−1

�Jl
�2��2:

−1

�Jl
�3��1:

−1
� � R5�5 �58�

Then, the forward and reverse velocity analysis for the mecha-
nism corresponding to Eqs. �10� and �12� are derivable.

3.2.3 Acceleration Analysis. Similar to Eqs. �55� and �56�, let

Al = ��̇x �̇y �̇z �̇px �̇py �T � R5�1 �59�

Hl
�i� = H�1–5�

�i� � R5�5�5 �60�

Then the forward and reverse acceleration analysis for the limb
corresponding to Eqs. �23� and �24� is derivable.

Similar to Eq. �57�, let the generalized input acceleration vector
for the mechanism be

q̈ = ��̈1
�1� �̈2

�1� �̈1
�2� �̈2

�2� �̈1
�3� �T �61�

So the reverse acceleration equation for the 3-�RRR��RR� PM is

q̈ = �Jls
−1�Al − q̇THls

−1q̇ �62�
where

Hls
−1 = �

gl
�1�T

��Jl
�1��1:

−1 * Hl
�1��gl

�1�

gl
�1�T

��Jl
�1��2:

−1 * Hl
�1��gl

�1�

gl
�2�T

��Jl
�2��1:

−1 * Hl
�2��gl

�2�

gl
�2�T

��Jl
�2��2:

−1 * Hl
�2��gl

�2�

gl
�3�T

��Jl
�3��1:

−1 * Hl
�3��gl

�3�
� �63�

Then the forward acceleration equation for the 3-�RRR��RR�
PM is

Al = Jlsq̈ + q̇THlsq̇ �64�
where

Hls = Jls * Hls
−1 � R5�5�5 �65�

3.2.4 Numerical Example. Limited by the length of the paper,
this paper only give three numerical J�i� �i=1,2 ,3� and Jls, but no

Table 1 Numerical Jacobian matrices for limbs and Jls

J�1� = 1.0000 0.8660 0.5010 0.9990 0.8853
0 0.0436 0.0319 0.0456 −0.3905
0 0.4981 0.8649 −0.0022 0.2524
0 0.9955 0.5921 0.0000 0.0000

−25.9793 −22.4767 −12.9762 −0.0000 0.0000
0.2743 0.2356 0.1360 0.0000 −0.0000

J�2� = −0.5000 −0.3578 −0.1967 −0.3963 −0.0478
0.8660 0.7934 0.4682 0.9181 0.9189
0 0.4924 0.8615 −0.0090 −0.3917

22.4987 20.4772 11.9265 −0.0000 0.0000
12.9896 9.3177 5.1482 −0.0000 0.0000
−0.1754 −0.1332 −0.0746 0.0000 −0.0000

J�3� = −0.5000 −0.4330 −0.2432 −0.4809 −0.8375
−0.8660 −0.7500 −0.4370 −0.8768 −0.5283

0 0.5000 0.8660 −0.0000 0.1393
−22.4987 −19.6216 −11.5893 0.0000 0.0000

12.9896 11.2714 6.3572 −0.0000 −0.0000
−0.0989 −0.0856 −0.0474 −0.0000 0.0000

Jls = 0.9850 0.7847 −0.6715 −0.7965 0.0608
−5.1017 −1.1574 7.6311 0.8468 0.6376

1.3005 −0.3034 −4.7372 −0.5511 −0.3749
−1.1626 −0.0296 −0.1467 −0.0214 −0.0000
−0.5019 −0.0128 3.2145 0.4692 −0.0000
APRIL 2007, Vol. 129 / 395
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essian matrices, shown in Table 1. Let �mn denote the angle
etween Rm and Rn, �12=�23=�45=� /6, �34=� /3. Radii for
ase and movable platforms are 200 mm and 50 mm, respectively.
hree numerical J�i� and Jl are given when �1

�1�=17� /36, �2
�1�

� /36, �1
�2�=5� /9, �2

�2�=−� /18, and �1
�3�=� /2.

Conclusions
This paper presents a novel method for the forward/reverse ve-

ocity and acceleration analysis of a class of lower-mobility par-
llel mechanisms whose number of single-DoF pairs in every limb
quals the number of DoF for the mechanism. The method is
ased on the kinematic influence coefficient method for the 6-DoF
arallel mechanism. With this method, orders of both Jacobian
nd Hessian for the lower-mobility PMs are less than 6, which
ake it easier to calculate the determinant of the symbol variable

acobian. Another merit of this method is that forms of formulas
re unified, so the method is convenient for programming. The
ore complicated the mechanism is, the more effective the
ethod is.
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