The
of Robotics

Technical reference manual

Controller software IRC5
RobotWare 5.0

AL DD
FRpmw

© Copyright 2004-2008 ABB. All rights reserved.

AL IDID
FRpmw

Technical reference manual - RAPID kernel
3HAC16585-1
Revision F

Controller software IRC5

RobotWare 5.0

RAPID kernel

Table of contents

RAPID Kernel reference manual

Index

The information in this manual is subject to change without notice and should not be construed as a commitment by ABB. ABB
assumes no responsibility for any errors that may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be construed as any kind of guarantee or
warranty by ABB for losses, damages to persons or property, fithess for a specific purpose or the like.

In no event shall ABB be liable for incidental or consequential damages arising from use of this manual and products described
herein.

This manual and parts thereof must not be reproduced or copied without ABB's written permission, and contents thereof must
not be imparted to a third party nor be used for any unauthorized purpose. Contravention will be prosecuted.

Additional copies of this manual may be obtained from ABB at its then current charge.

©Copyright 2004-2008 ABB All right reserved.

ABB AB
Robotics Products
SE-721 68 Vasteras
Sweden

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Contents

I) 0o [Tox 4 o] o ISR 1
1.1 DESIGN ODJECLIVES......ecueeiecie ettt et teebe e e raenaeeneenns 1
1.2 Language SUMMAIYccuuieireeeriireesiuesssiseessssessssesssseessssesssssesssssesssssesssssessssssssssessssesssnees 1

TaSK = MOUUIES ...t e e e e sre e nns 1
ROULINES ...ttt ettt e et e st e st e et e st e e te e st e sbeeteeseesteenseanaenre e 2
USEE FOULINES ...ttt sttt ettt et e et e e te et e e se e b e et e eneestaenneaneesreenee e 2
Predefined FOULINESccuiiieii ettt e e nte e sre e e 2
D 17 W] o] 1< £SO SRS 2
Y L=] 0 0T £SO PPTPPUPRP 2
BaCKWard EXECULIONc.eeiiiiiiciiccie ettt e ra e teennesne e e 3
ETTON TECOVETY ..ottt ettt e e sr e e nbb e e e bb e e e bb e e anbeeennneeeas 3
UNGAO EXECULION ...ttt ettt et e et e et et e e e e neesteenneeneesreenee e 4
L1 (T U0 £ T PSPPI 4
D1 £ A 0L PP P PP 4
BUITE-IN JaLA LYPES ...ttt ra et re e 4
INStAlled dAta TYPES....cveceeeceece et 5
USEr-defined data tYPES........vciui it re e 5
o o Tor=] 10 0 [T OSSR 5
1.3 SYNEAX NOTALIONoiieiecic ettt s e b e e ste e e sreeneans 6
1.4 Error ClasSIfICALION........ccviiiiiic ettt ra e ns 6

2 LeXICAl BIBMENTS .. .ottt et e e e e s be e aeereesre e teaneenre s 9
N A O -V o1 =) AU 9
2.2 LEXICAI UNIES .vivieieieiecie ettt ettt et et a et e s reeste e e e ane e raeneennen 10
FZ0C B [0 =10 (] T S SSUSSRPSRS 10
2.4 RESEIVEU WOIUS.ecviieieiieeie ettt te et e st e et este et e s e e s aeetesraesteennesaeesreeneennen 11
2.5 NUM TIEEIAIS ..o e e e be e saeeanes 11
2.6 BOOI HTEIAlS....c.uei i e 12
2.7 SEANG HEEIAIS. ...ttt neenne s 12
2.8 DEIIMITEIS ... e e e e e et e e e e e nrs 12
2.9 PlaCENOIUEIS......ei it 13
2.00 COMIMENTSiiie ittt e et e e et e e s b e e e esbe e e ssbe e e sa e e e seeeanseeanseeeanseaeas 13
2.10 DALA TYPES -.eeeeeeeteeetee etttk h et b e bt bt e Rb e be e nhe e e be e nr e b e e nneeenes 14
2.12 SCOPE TUIBS....eeeeeeee ettt ettt sttt b ettt e sb e b e beesbesbeesbeeneesbe e besneennean 15
N R R AN (o] 141 To 1Y 1RSSR TTROURPRRRRS 15

UM Y8 ettt e et s hb e e e abb e e e be e e sab e e e nnbe e e snneeea 16
= 0T0] I8 Y o L= TSRO URTTRSURTR 16
1] L0 NN oL ST PR TR 16
2.1 RECOIT LYPES ..veetietieiie st e ettt ettt sttt sttt b et e st et e et e e st e ebeebeereenbeenbesneenbeeneennean 16

RAPID kernel |

Contents

P OS LY B ettt e rreean 17
(@ 1=T 1 i oL OSSR 18
OIS £/ oI PSR URPOPRRTPI 18
2.15 ALIAS TYPBS ..ttt e et et e e be e nreereanre e 19
EFTNUIM Y8 et e e srb e e nnb e e nrneean 19

LI IUIN LY D8 et bb e e et e e b e e e e nrae s 19
2.16 Data type VAlUE CIASSES.........coviiiiiieciectie sttt ens 19
2.17 EQUAILYPES ...ttt ettt a et et a e et e re e re e e 22
2.18 Data dECIArAtiONSccveivieiiiie ettt e e reereenre e 22
2.19 Predefined data ODJECES.........cci i s 23
2.20 SCOPE FUIES ...ttt ettt sttt et e e et e et e e be e e te e st e areesteeneesreenneenee e 23
A R (0] - 1o [T ol - TSSO 24
2.22 Variable deClarationsccooeeiieiiiie e 25
2.23 PersiStent deCIarationscccvcveiieiiiiic st 26
2.24 Constant deClarationscocvoiiiieiiic e s 27
I (o] =ES1] (0] TSRS 29
3.1 CONSIANT EXPIESSIONScuvieveeiteeieeiee e eie et e ste et e s e e ste et e st e e saeaseesteeteaseesseesesseesreeneeareeseans 30
3.2 LIteral EXPreSSIONS. ... c.viiieiieeieitee it ete st e et st e e st te e e s te e teesaesneesaeesnesreesteenreanaenneas 30
3.3 CoNditioNal EXPIESSIONSccveeiieeieieeiteeie s et rte st e st et e e steete e e sreeaeareesreesesreesreaneens 30
KB 1 (<] - | SRS 31
3.5 VAlADIES ... et nre e 31
ENLIrE VAIADIE ...ttt re e 31
Variable BIEMENT..........ooiiie e 32
Variable COMPONENToiiee e nre e 32

BB T £ 11 (=10 (ST SPRPS 32
A O0 4 51 1| PSP UPRPR 33
R B o 1= 01123 (T £ TP ORI 33
3.0 A OIS .. eeieieiii ettt ettt e b e e nes 33
3.10 FUNCHION CAIIS ...ttt et sreeaesreesreenna s 34
0 R O LT - (0] £ PSPPSR 36
MUIIPHCALION OPEIALOIS.....ccuviivieie ettt et ere e 36
Yo (o [o] gl 0] 1= Lo USSR 37
Relational OPEIAtOrScveiiece et re e 37

o ToTTor= Lo o T=T = (o] £ SRS 37

O -1 =] 1 o | £ PP OU PR PPRPOPRPTR 39
4.1 Statement terMINALION..........c.coiiieiieie et ste e e e nne s 40
4.2 SEAtEMENT HISES....eeiiiieiicee e et re e e e nre e resraene s 40
4.3 Label StAtBMENL.......c.oiiiee e reeaenre s 41

| RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Contents

4.4 ASSIGNMENT STALEMENT.....c.veiiiiiecie et te et s esae e ens 41
4.5 ProCeAUIe Callociuiiiiciec et 42
I CT0) (oI - =] 1 1 =T | SRR TPRRPPRRN 44
A = (0 ST =] 1 0T L PP RTPRRPPRTRN 44
4.8 RaISE STALEIMENT.......eiiiiieceee e et e e et e e s e steesteeneenreerennes 45
4.9 EXIESTAtEMENTooiiiiii et e te et e e s e sta et e eneenreenennes 45
4.10 REtrY SEAIEIMENT.....coiiiiiiiiie it e e e e nab e e s beeeanneean 46
4,11 TryneXt SLAEMENTviiiiii ittt be e e sbe e e beeennbeeans 46
4.12 CONNECE STAEMENT......eiiiiiie ettt srb e nab e e beeesnbeeens 47
O | B 1= (=1 10T L RSP RPPP 47
4.14 CompPact IF STAEMENT.......oiiiiie it be e e sree e 48
R o]] F= 1 =10 1< | SRR PPRRPPRRN 48
4.16 WHhile STatEMENToiiiie ettt sre e nnas 49
4,17 TeSE STAEMENT ...ieieiiei ettt e b s e e s b e e e b e e e rb e e e rre e 49
5 ROULINE ECIAIAtIONSccviiieiiccie et et te e e 51
5.1 Parameter deClarations..........cccueieiieiiiiiiie st sre e sre e 52
5.2 SCOPE TUIES ...ttt ettt e st e et e s ae e s teestesaeenteeneesreeseennen 54
5.3 Procedure deClarations............cueieiieiieie ittt sra e sre e sra e 54
5.4 FUNCLION AECIAIALIONS........icuiiiiieie ettt re e e e e nnen 55
5.5 Trap deCIarationscouiiiiiieiecie st re e sre e e ste e besneenne s 56
6 BaCKWAId EXECULIONoiuiiiieie sttt ettt re et e esae e reereesreenee e 57
6.1 Backward NanAIErScocviiiiie et nra e 57
6.2 Limitation of move instructions in the backward handler.............cccccoveviiiiiiieieccennn, 58
A =L g 0] g 1001 VL] o PP PROPPPOPRPTR 61
0 A (0Tl 4 Ta o L SRS OUOSOPSSR 61
7.2 Error recovery With 1oNg JUMP ..o 62
EXECULION TEVEIS ...t 63
EITOr TECOVEIY POINT...oiiiiiiiiitie ittt sbe e e nas 63
)Y 1 b TP P TR OPR PP 63
Using error recovery With 1oNg JUMP ..o s 64
Error recovery through execution level boundaries............ccooeviiiiiiieiiicncee, 64
REMAIKS ..t e ettt e e s e e b e e e e e be e e e e beenrre s 65
UNDO NANGIET ...ttt be e te e e e e sbeesrbeereeas 65

7.3 NOSTEPIN FOULINES ...ttt sttt ettt et e s s e s beestesbeesbeenbesreenbeas 66
7.4 ASYNCNroNOUSIY rAISEA BITOFSoiveeitieiieiie ittt et st nne s 67
ADbout asynchronously raiSEA EITOIS.uoiiiiiiieiieie e 67
Two types of asynchronously raiSed ErTOrS.........cooveveiieieiie e 68
Attempt to handle errors in the routine that called the move instruction....................... 68

RAPID kernel 11

Contents

What happens when a routine call is dropped?..........cccceoveiiiieiieie e 70

COUB EXAMPIE... . et reerenres 70
Nostepin move instructions and asynchronously raised errors............ccoocevvvevecivesnenns 72

UNDO NANGIEE ...ttt bbbttt eas 73

7.5 SKIPWAIN ...ttt et e e et e et e e s e s be et e e beesbeeneenreesreenee e 73

S L1 (T U]] TP PP PSP 75
8.1 Interrupt recognition and rESPONSEcveirieiieeireiiesreeie st e se e s e seeste s e sreesee e e sreeneeas 75

8.2 Interrupt ManiPUIALIONccviiiiece e 75

8.3 TTAP FOULINESte ettt ettt e st et et e te et e e seesae e teeneesteesseeneesseesreenneeeas 76

9 TASK MOTUIES ...t bbbttt bbb bbb e r e e e et 79
9.1 MOAUIE AECIArALIONSecvieiieiieieiee e 80

0.2 SYSIEM MOUUIES........oceiiitieie et e e e esaeenre e 82

10 SYNTAX SUMIMIBIYeiiiiie ittt siee et e st e st e st e e be e e b e e st e e sab e e e sb b e e e sbb e e e bbeeenbeeesnbeeennseeennes 83
11 BUIE-IN FOUTINES ..ottt st sttt 93
12 BUIlt-IN data ODJECTScviieicciecc ettt re e ee e e 95
G =W 1] T T o] 1= £SO 97
TR0 @ o 1= od Yol - PSR 97
13.2 The value of a built in data object durability.............cccooeiiiiiiiii e, 98
13.3 The way to define user installed ODJECEScccvevveii i, 98

I 1] (T = TS 1] o [OSSR 101
141 SYMDBOIIEVEIS ...t re e sre e re e e 101
14.2 Data 0bJect NANAIING........ocoiiieece e 102
14.3 The way to define installed shared ObJecCtcccoviveiiiiciicc e 102
14.4 System global persistent data ODJECEccoveiiiiiiii e 102

15 TEXE FIIES 1ot bbbt b b e reenes 105
15.1 Syntax for @ateXt Fllecoviiiiiee e 105
15.2 Retrieving text during program eXeCULION.........cc.eiveirerieieereeie s ese e se e see e 106
15.3 L0AdiNg tEXE FIlES ...c.viiieiieeie e 106

16 Storage allocation for RAPID ODJECLScccvciuiiiiiicecicceee e 107
16.1 Module, routine, program flow and other basic instruction................ccccoceviviveinennn. 107
16.2 MOVE INSITUCTIONSevvivieiecie ettt ettt ne s 108
16.3 1/O INSEIUCTIONS ...ttt ettt bbbt be et beene s 108

AV RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Introduction

1 Introduction

This manual contains a formal description of the ABB Robotics robot programming
language RAPID.

1.1 Design objectives

The RAPID language is aimed to support a levelled programming concept where new
routines, data objects and data types may be installed at a specific IRB site. This
concept makes it possible to customize (extend the functionality of) the programming
environment and must be fully supported by the programming language.

In addition, with RAPID a number of powerful features are introduced:

- Modular Programming - Tasks/Modules
- Procedures and Functions

- Type definitions

- Variables, Persistents and Constants
- Arithmetic

- Control Structures

- Backward Execution Support

- Error Recovery

- Undo Execution Support

- Interrupt Handling

- Placeholders

1.2 Language summary

Task - modules

An RAPID application is called a task. A task is composed of a set of modules. A
module contains a set of data and routine declarations. The task buffer is used to host
modules currently in use (execution, development) on a system.

RAPID distinguishes between task modules and system modules. A task module is
considered to be a part of the task/application while a system module is considered to
be a part of the “system”. System modules are automatically loaded to the task buffer
during system start-up and are aimed to (pre)define common, system specific data
objects (tools, weld data, move data ..), interfaces (printer, logfile ..) etc.

RAPID kernel 1

Introduction

While small applications usually are contained in a single task module (besides the
system module/s), larger applications may have a "main" task module that in turn
references routines and/or data contained in one or more other, "library" task modules.

One task module contains the entry procedure of the task. Running the task really
means that the entry routine is executed. Entry routines must be parameterless.

Routines

There are three types of routines - functions, procedures and traps. A function returns
a value of a specific type and is used in expression context. A procedure does not return
any value and is used in statement context. Trap routines provide a means to respond

to interrupts. A trap routine can be associated with a particular interrupt and is then later
automatically executed if that interrupt occurs.

User (defined) routines are defined using RAPID declarations while predefined
routines are supplied by the system and always available.

User routines

An RAPID routine declaration specifies the routine name, routine parameters, data
declarations, statements and possibly a backward handler and/or error handler and/or
undo handler.

Predefined routines

There are two types of predefined routines - built-in routines and installed routines.
Built-in routines (like arithmetic functions) are a part of the RAPID language while
installed routines are application/equipment dependent routines used for the control of
the robot arm, grippers, sensors etc. Note that from the users point of view there is no
difference between built-in routines and installed routines.

Data objects

There are four types of data objects - constants, variables, persistents and parameters.
A persistent (data object) can be described as a "persistent” variable. While a variable
value is lost (re-initialized) at the beginning of each new session - at module load
(module variable) or routine call (routine variable) - a persistent keeps its value
between sessions. Data objects can be structured (record) and dimensioned (array,
matrix etc.).

Statements

A statement may be simple or compound. A compound statement may in turn contain
other statements. A label is a "no operation” statement that can be used to define named
(goto-) positions in a program. Statements are executed in succession unless a goto,
return, raise, exit, retry or trynext statement, or the occurrence of an interrupt or error
causes the execution to continue at another point.

2 RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Introduction

The assignment statement changes the value of a variable, persistent or parameter.

A procedure call invokes the execution of a procedure after associating any arguments
with corresponding parameters of the procedure. RAPID supports late binding of
procedure names.

The goto statement causes the execution to continue at a position specified by a label.
The return statement terminates the evaluation of a routine.

The raise statement is used to raise and propagate errors.

The exit statement terminates the evaluation of a task.

The connect statement is used to allocate an interrupt number and associate it with a
trap (interrupt service) routine.

The retry and trynext statements are used to resume evaluation after an error.

The if and test statements are used for selection. The if statement allows the selection
of a statement list based on the value of a condition. The test statement selects one (or
none) of a set of statement lists, depending on the value of an expression.

The for and while statements are used for iteration. The for statement repeats the
evaluation of a statement list as long as the value of a loop variable is within a specified
value range. The loop variable is updated (with selectable increment) at the end of each
iteration. The while statement repeats the evaluation of a statement list as long as a
condition is met. The condition is evaluated and checked at the beginning of each
iteration.

Backward execution

RAPID supports stepwise, backward execution of statements. Backward execution is
very useful for debugging, test and adjustment purposes during RAPID program
development. RAPID procedures may contain a backward handler (statement list) that
defines the backward execution "behaviour" of the procedure.

Error recovery

The occurrence of a runtime detected error causes suspension of normal program
execution. The control may instead be passed to a user provided error handler. An
error handler may be included in any routine declaration. The handler can obtain
information about the error and possibly take some actions in response to it. If
desirable, the error handler can return the control to the statement that caused the error
(retry) or to the statement after the statement that caused the error (trynext) or to the
point of the call of the routine. If further execution is not possible, at least the error
handler can assure that the task is given a graceful abortion.

RAPID kernel 3

Introduction

Undo execution

A routine can be aborted at any point by moving the program pointer out of the routine.
In some cases, when the program is executing certain sensitive routines, it is unsuitable
to abort. Using a undo handler it is possible to protect such sensitive routines against
an unexpected program reset. The undo handler is executed automatically if the routine
is aborted. This code should typically perform clean-up actions, for instance closing a
file.

Interrupts

Interrupts occur as a consequence of a user defined (interrupt) condition turning true.
Unlike errors, interrupts are not directly related to (synchronous with) the execution of
a specific piece of the code. The occurrence of an interrupt causes suspension of normal
program execution and the control may be passed to a trap routine. After necessary
actions have been taken in response to the interrupt the trap routine can resume
execution at the point of the interrupt.

Data types

Any RAPID object (value, expression, variable, function etc.) has a data type. A data
type can either be a built-in type or an installed type (compare installed routines) or a
user-defined (defined in RAPID) type. Built-in types are a part of the RAPID language
while the set of installed or user-defined types may differ from site to site. From the
users point of view there is no difference between built-in, installed and user-defined
types. There are three different kinds of types - atomic types, record types and alias
types. The definition of an atomic type must be built-in or installed, but a record or alias
type could also be user-defined.

Atomic types are "atomic" in the sense that they are not defined upon any other type
and they cannot be divided into parts or components. Record types are built up by a set
of named, ordered components. An alias type is by definition equal to another type.
Alias types make it possible to classify data objects.

In addition to the atomic, record or alias classification of types, each type has a value
class. There are three value classes of types - value types, nonvalue types and semivalue
types. An object of value type is simply considered to represent some form of "value™
(e.g, 3.55 or "John Smith™). A nonvalue (type) object instead represents a hidden/
encapsulated description of some physical or logical object, e.g. a file. Semivalue
objects are somewhat special. They really have two types, one "basic” nonvalue type
and one associated value type that may be used to represent some property of the
nonvalue type.

Built-in data types
The built-in atomic types are bool, num and string. Bool is an enumerated type with the
value domain {TRUE, FALSE} and provides a means of performing logical and

relational computations. The num type supports exact and approximate arithmetic
computations. The string type represents character sequences.

4 RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Introduction

The built-in record types are pos, orient and pose. The pos type represents a position
in space (vector). The orient type represents an orientation in space. The pose type
represents a coordinate system (position/orientation combination).

The built-in alias types are errnum and intnum. Errnum and intnum are both aliases for
num and are used to represent error and interrupt numbers.

Operations on objects of built-in types are defined by means of arithmetic, relational
and logical operators and predefined routines.

Installed data types

The concept of installed types supports the use of installed routines by making it
possible to use appropriate parameter types. An installed type can be either an Atomic,
Record or Alias type.

User-defined data types

The user-defined types make it easier to customise an application program. They also
make it possible to write a RAPID program which is more readable.

Placeholders

The concept of placeholders supports structured creation and modification of
RAPID programs. Placeholders may be used by Offline and Online programming tools
to temporarily represent "not yet defined" parts of an RAPID program. A program that
contains placeholders is syntactically correct and may be loaded to (and saved from)
the task buffer. If the placeholders in an RAPID program do not cause any semantic
errors (see 1.4), such a program can even be executed, but any placeholder encountered
causes an execution error (see 1.4).

RAPID kernel 5

Introduction

1.3 Syntax notation

The context-free syntax of the RAPID language is described using a modified variant
of the Backus-Naur Form - EBNF:

- Boldface, upper case words denote reserved words and placeholders. e.g.
WHILE
- Quoted strings denote other terminal symbols. e.g. *+’

- Strings enclosed in angle brackets denote syntactic categories - nonterminals.
e.g. <constant expression>

- The symbol "::=" means is defined as. e.g. <dim> ::= <constant expression>

- A list of terminals and/or nonterminals denotes a sequence. e.g.
GOTOc<identifier> ’;’

- Square brackets enclose optional items. The items may occur zero or one time.
e.g. <return statement> ::= RETURN [<expression>]’;’

- The vertical bar separates alternative items. e.g. OR | XOR

- Braces enclose repeated items. The items may appear zero or more times. e.g
<statement list> ::= { <statement> }

- Parentheses are used to hierarchically group concepts together e.g.
(OR|XOR)<logical term>

1.4 Error classification
Based on the time of detection errors may be divided into:

- Static errors
- Execution errors

Static errors are detected either when a module is loaded into the task buffer (see 9) or
prior to program execution after program modification:

- Lexical errors - illegal lexical elements. e.g. b := 2E52786; Exponent out of
range

- Syntax errors - violation of the syntax rules. e.g. FOR 15 TO 10 DO - Missing
FROM keyword

- Semantic errors - violation of semantic rules - typically type errors. e.g. VAR
num a; a := "John"; - Data type mismatch

- Fatal (system resource) errors. e.g. Program to complex (nested)
Execution errors occur (are detected) during the execution of a task:

- Arithmetic errors. e.g. Division by zero
- 10-errors. e.g. No such file or device
- Fatal (system resource) errors. e.g. Execution Stack overflow

6 RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Introduction

The error handler concept of RAPID makes it possible to recover from nonfatal
execution errors. Refer to 7.

RAPID kernel 7

Introduction

"pantasal SIUBU 1V 'agV 8002700z ubliAdoD @

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

Lexical elements

2 Lexical elements

This chapter defines the lexical elements of RAPID.

2.1 Character set

Sentences of the RAPID language are constructed using the standard 1SO 8859-1
(Latin-1) character set. In addition newline, tab and formfeed control characters are

recognized.

<character> ::= -- ISO 8859-1 (Latin-1)--
<newline> ::= -- newline control character --
<tab> ::= -- tab control character --

<digit>::=0]1|2|3|4|5|6|7|8|9

<hex digit> ::= <digit>|A|B|C|D|E|F|a|b|c|d|e]|f

<letter> ::=
<upper case letter>
| <lower case letter>

<upper case letter> ::=
A|B|C|D|E|F|G|H]|I]|J
|K|L|M|N|O|P|Q|R,|81T~
[UIVIWI|X|Y|Z|A|JAIA|A
AIAI&|CIEIEIE|E|TT
[T[T["[N]O|O|O[O|O|2
|UIU|0|02]9(8

<lower case letter> ::=
alblcld|e|f[g|h]i]]
|[k[Tfm[nfo|p|qg[r|s]|t
lufvlw|x|y|z|Blalala]|a
|alalelclelé|ele|i]i
|[T[T[2|n|0[6]6]8|0]e
lafafalal>|ay

1) Icelandic letter eth.

2) Letter Y with acute accent.
3) Icelandic letter thorn.

RAPID kernel 9

Lexical elements

2.2 Lexical units
An RAPID sentence is a sequence of lexical units - tokens. The RAPID tokens are:

- identifiers

- reserved words
- literals

- delimiters

- placeholders

- comments

Tokens are indivisible. Except for string literals and comments, space must not occur
within tokens.

An identifier, reserved word or numeric literal must be separated from a trailing,
adjacent identifier, reserved word or numeric literal by one or more space, tab,
formfeed or newline characters. Other combinations of tokens may by separated by one
or more space, tab, formfeed or newline characters.

2.3 ldentifiers
Identifiers are used for naming objects.

<identifier> ::=
<ident>
| <ID>
<ident> ::= <letter> {<letter> | <digit>|’_’}

The maximum length of an identifier is 32 characters. All characters of an identifier are
significant. Identifiers differing only in the use of corresponding upper and lower case
letters are considered the same. The placeholder <ID> (see Placeholders on page 5 and
2.9 Placeholders on page 13) can be used to represent an identifier.

10 RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

DD All viahta vAanAarmiad
S e fagr e

© Copyright 2004-2008 A

Lexical elements

2.4 Reserved words

The 56 identifiers listed below are reserved words. They have a special meaning in the

language. They may not be used in any context not specially stated by the syntax.

ALIAS AND BACKWARD
CASE CONNECT CONST
DEFAULT DIv DO

ELSE ELSEIF ENDFOR
ENDFUNC ENDIF ENDMODULE
ENDPROC ENDRECORD ENDTEST
ENDTRAP ENDWHILE ERROR

EXIT FALSE FOR

FROM FUNC GOTO

IF INOUT LOCAL

MOD MODULE NOSTEPIN
NOT NOVIEW OR

PERS PROC RAISE
READONLY RECORD RETRY
RETURN STEP SYSMODULE
TEST THEN TO

TRAP TRUE TRYNEXT
UNDO VAR VIEWONLY
WHILE WITH XOR

2.5 Num literals
A num literal represents a numeric value.

<num literal> ::=
<integer> [<exponent>]
| <integer>’.” [<integer>] [<exponent>]
| [<integer>]’.” <integer> [<exponent>]
<integer>::= <digit> {<digit>}

<exponent>::= (CE’|’e’) [+’ | ’-’] <integer>

RAPID kernel

11

Lexical elements

A num literal must be in the range specified by the ANSI IEEE 754-1985 standard
(single precision) float format.

e.g. 7990 23.67 2E6 .27 2.5E-3 38.

2.6 Bool literals

A bool literal represents a logical value.

<bool literal> ::= TRUE | FALSE

2.7 String literals

A string literal is a sequence of zero or more characters enclosed by the double quote
(") character.

<string literal> ::= """ { <character> | <character code> } "
<character code> ::= "\’ <hex digit> <hex digit>

The possibility to use character codes provides a means to include non printable
characters (binary data) in string literals. If a back slash or double quote character
should be included in a string literal it must be written twice.

e.g. "A string literal”
"Contains a """ character"
"Ends with BEL control character\07"
"Contains a \\ character"

2.8 Delimiters

12

A delimiter is one of the following characters:

{3O)[], . =<>+-*[:;1\7?
or one of the following compound symbols:

= <> >= <=

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Lexical elements

2.9 Placeholders

Placeholders can be used by Offline and Online programming tools to temporarily
represent "not yet defined" parts of an RAPID program. A program that contains
placeholders is syntactically correct and may be loaded to (and saved) from the task
buffer. If the placeholders in an RAPID program do not cause any semantic errors (see
1.4 Error classification on page 6), such a program can even be executed, but any
placeholder encountered causes an execution error (see 1.4 Error classification on
page 6). RAPID recognizes the following 13 placeholders:

<TDN> - (represents a) data type definition
<DDN> - (represents a) data declaration
<RDN?> - routine declaration

<PAR> - parameter declaration

<ALT> - alternative parameter declaration
<DIM> - array dimension

<SMT> - statement

<VAR> - data object (variable, persistent or parameter) reference
<EIT> - else if clause of if statement
<CSE> - case clause of test statement
<EXP> - expression

<ARG> - procedure call argument

<ID> - identifier

2.10 Comments

A comment starts with an exclamation point and is terminated by a newline character.
A comment can never include a newline character.

<comment> ::="1" { <character> | <tab> } <newline>

Comments have no effect on the meaning of an RAPID code sequence, their sole
purpose is the enlightenment of the reader.

Each RAPID comment occupies an entire source line and may occur either as:

- an element of a type definition list (see 3),
- an element of a record component list,

- an element of a data declaration list (see 5.3 Procedure declarations on page
54),

- an element of a routine declaration list (see 9.1 Module declarations on page
80) or

- an element of a statement list (see 4.2 Statement lists on page 40).

RAPID kernel 13

Lexical elements

e.g.
I Increase length
length := length + 5;
IF length < 1000 OR length > 14000 THEN
I Out of bounds
EXIT,
ENDIF

Comments located between the last data declaration (see 2.18 Data declarations on
page 22) and the first routine declaration (see 5 Routine declarations on page 51) of a
module are regarded to be a part of the routine declaration list. Comments located
between the last data declaration and the first statement of a routine are regarded to be
a part of the statement list (see 4.2 Statement lists on page 40).

2.11 Data types

14

An RAPID data type is identified by its name and can be either built-in, installed or a
user-defined (defined in RAPID).

<data type> ::= <identifier>

Built-in types are part of the RAPID language while the set of installed or user-defined
types may differ from site to site. Please refer to site specific documentation. The
concept of installed types supports the use of installed routines by making it possible
to use appropriate parameter types. The user-defined types make it possible to prepare
understandable and easy programmable application packets for the application
engineer. From the users point of view there is no difference between built-in, installed
and user-defined types.

There are three different kinds of types - atomic types, record types and alias types.

A type definition introduces an alias or a record by associating an identifier with a
description of a data type. A type definition can be represented by the placeholder
<TDN>.

<type definition> ::=
[LOCAL] (<record definition>
| <alias definition>)
| <comment>
| <TDN>

Type definitions can occur in the heading section of modules (see 9 Task modules on
page 79).

The optional local directive classifies the data object being local, otherwise global (see
2.20 Scope rules on page 23).

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Lexical elements

e.g. LOCAL RECORD object- record definition
num usecount;
string name;
ENDRECORD

ALIAS num another_num; - alias definition

<TDN>- definition placeholder

2.12 Scope rules

The scope of a type definition denotes the area in which the type is visible and is
determined by the context and position of its declaration.

The scope of a predefined type comprises any RAPID module.

A user-defined type is always defined inside a module. The following scope rules are
valid for module type definitions:

- The scope of a local module type definition comprises the module in which it
is contained.

- The scope of a global module type definition in addition comprises any other
module in the task buffer.

- Within its scope a module type definition hides any predefined type with the
same name.

- Within its scope a local module type definition hides any global module type
with the same name.

- Two module objects declared in the same module may not have the same name.

- Two global objects declared in two different modules in the task buffer may not
have the same name.

2.13 Atomic types

Atomic types are "atomic" in the sense that they are not defined upon any other type
and cannot be divided into parts or components. The internal structure
(implementation) of an atomic type is hidden. The built-in atomic types are the
numeric type num, the logical type bool and the text type string.

RAPID kernel 15

Lexical elements

Num type

A num object represents a numeric value. The num type denotes the domain specified
by the ANSI IEEE 754-1985 standard (single precision) float format.

Within the subdomain -8388607 to (+)8388608, num objects may be used to represent
integer (exact) values. The arithmetic operators +, -, and * (see 3.11 Operators on page
36) preserves integer representation as long as operands and result are kept within the
integer subdomain of num.

Examples of num usage;

VAR num counter; - variable declaration
counter := 250; - num literal usage

Bool type

A bool object represents a logical value.
The bool type denotes the domain of twovalued logic - { TRUE, FALSE }.
Examples of bool usage;

VAR bool active; - variable declaration
active := TRUE; - bool literal usage

String type

A string object represents a character string.

The string type denotes the domain of all sequences of graphical characters (ISO 8859-
1) and control characters (non ISO 8859-1 characters in the numeric code range O ..
255). A string may consist of 0 to 80 characters (fixed 80 characters storage format).
Examples of string usage;

VAR string name; - variable declaration
name := "John Smith"; - string literal usage

2.14 Record types

16

A record data type is a composite type with named, ordered components. The value of
a record type is a composite value consisting of the values of its components. A
component can have atomic type or record type. Semivalue types cannot be included
in a record type. The built-in record types are pos, orient and pose. The available set of
installed and user-defined record types is by definition not bound by the RAPID
specification. Please refer to site specific documentation.

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Lexical elements

A record type is introduced by a record definition.

<record definition> ::=

RECORD <identifier>

<record component list>

ENDRECORD
<record component list> ::=

<record component definition> |

<record component definition> <record component list>
<record component definition> ::=

<data type> <record component name> ’;’

e.g. RECORD newtype
num x;
ENDRECORD

A record value can be expressed using an aggregate representation.

e.g. [300, 500, depth] - pos record aggregate value

A specific component of a record data object can be accessed by using the name of the
component.

e.g. pl.x :=300; - assignment of the x-component of
the

pos variable pl

Unless otherwise stated the domain of a record type is the cartesian product of the
domains of its components.

Pos type
A pos object represents a vector (position) in 3D space. The pos type has three
components:
[xy.z]
name data typecomment
X num X-axis component of position
y num Y-axis component of position
z num Z -axis component of position

RAPID kernel 17

Lexical elements

Examples of pos usage:

VAR pos p1; - variable declaration
pl:=[10, 10,55.7]; - aggregate usage
pl.z :=pl.z + 250; - component usage
pl:=pl+p2; - operator usage

Orient type

An orient object represents an orientation (rotation) in 3D space. The orient type has
four components:

[g1,02 03, q4]

name data type comment

ql num first quarternion component
q2 num second quarternion component
g3 num third quarternion component
q4 num fourth quarternion component

The quarternion representation is the most compact way to express an orientation in
space. Alternate orientation formats (e.g. euler angles) can be specified using
predefined functions available for this purpose.

Examples of orient usage:

VAR orient 01; - variable declaration
01:=[1,0,0,07; - aggregate usage
0l.ql :=-1, - component usage

ol :=euler(al, b1, gl1);- function usage

Pose type

A pose object represents a 3D frame (coordinate system) in 3D-space. The pose type
has two components:

[trans, rot]

name data type comment
trans pos origin translation
rot orient rotation

Examples of pose usage:

VAR pose p1; - variable declaration
pl:=[[100, 100,01, 01]; - aggregate usage
pl.trans := homepos; - component usage

18 RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Lexical elements

2.15 Alias types
An alias data type is defined as being equal to another type. Alias types provide a
means to classify objects. The system may use the alias classification to look up and
present type related objects.
An alias type is introduced by an alias definition.

<alias definition> ::=
ALIAS <type name> <identifier>’;’

e.g. ALIAS num newtype;

e.g. Usage of alias type ’level’ (alias for num):

CONST level low :=2.5;
CONST level high := 4.0;

Note that one alias type cannot be defined upon another alias type.

The built-in alias types are errnum and intnum - both aliases for num.

Errnum type

The errnum type is an alias for num and is used for the representation of error numbers.

Inthum type

The intnum type is an alias for num and is used for the representation of interrupt
numbers.

2.16 Data type value classes

With respect to the relation between object data type and object value, different data
types can be classified as being either a:

- value data type, a

- nonvalue (private) data type or a

- semivalue data type.
An object of value type is simply considered to represent some form of "value"” (e.g. 5,
[10, 7, 3.25], "John Smith", TRUE). A nonvalue (type) object instead represents a

hidden/encapsulated description (descriptor) of some physical or logical object, e.g.
the iodev (file) type.

RAPID kernel 19

Lexical elements

20

The content (“value™) of nonvalue objects can only be manipulated using installed
routines ("methods™). Nonvalue objects may in RAPID programs only be used as
arguments to var or ref parameters.

e.g. Use of nonvalue object ’logfile’
VAR iodev logfile;

! 6ben logfile
Open "flp1:LOGDIR" \File := "LOGFILE1.DOC ", logfile;

I Write timestamp to logfile
Write logfile, "timestamp =" + GetTime();

Semivalue objects are somewhat special. They really have two types, one "basic"
nonvalue type and one associated (value) type that may be used to represent some
property of the nonvalue type. RAPID views a semivalue object as a value object when
used in value context (se table below) and a nonvalue object otherwise. The semantics
(meaning/result) of a read or update (value) operation performed upon a semivalue type
is defined by the type itself.

e.g. Use of semivalue object ’sigl’ in value context (the associaed
type of
signaldi is num).
VAR signaldi sig1,;

! Qge digital input sigl as value object
IFsigl =1 THEN ...

! L.J.S.,e digital input sigl as nonvalue object
IF DInput(sigl) =1 THEN ...

Note that a semivalue object (type) can reject either reading or updating "by value™.
.. The following assignment will be rejected by sigl since sigl
represents
an input device.
VAR signaldi sig1;
sié]”l =1,

The table below shows which combinations of object usage and type value class that
are possibly legal and which are impossible/illegal:

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Lexical elements

XLegal/Possible

---1llegal/Impossible Data type value class
Obiject Declarations value | nonvalue semivalue
Constant X
Persistent X
Variable with initialization X
Variable without initialization | X X X
Routine Parameter
in X
var X X X

o | pers X

s | ref (only installed routines) X X X

g inout:

2, var X

; pers X

A& | Function return value X
Object Reference value | nonvalue semivalue
Assignment? X x1
Assignment X X3 x3)
Assignment?) X x1

1) The associated type (value) is used.

2) Assignment target (see 4.4), Connect target (see 4.12).
3) Argument to var or ref parameter.

4) Object used in expression.

The basic value types are the built-in atomic types num, bool and string. A record type
with all components being value types is itself a value type, e.g the built-in types pos,
orient and pose. An alias type defined upon a value type is itself a value type, e.g. the
built-in types errnum and intnum.

A record type having at least one semivalue component and all other components have
value type is itself a semivalue type. An alias type defined upon a semivalue type is
itself a semivalue type.

All other types are nonvalue types, e.g record types with at least one nonvalue
component and alias types defined upon nonvalue types.

Arrays have the same value class as the element value class.

RAPID kernel 21

Lexical elements

2.17 Equal types

The types of two objects are equal if the objects have the same structure (degree,
dimension and number of components) and either:

- Both objects have the same type name (any alias type name included is first
replaced by its definition type).

- One of the objects is an aggregate (array or record) and the types of (all)
corresponding elements/components are equal.

- One of the objects has a value type, the other object has a semivalue type and
the type of the first object and the associated type of the semivalue object are
equal. Note that this is only valid in value context.

2.18 Data declarations

22

There are four kinds of data objects - constants, variables, persistents and parameters.
Except for predefined data objects (see 2.19 Predefined data objects on page 23 and
appendix C) and for loop variables (see 4.15 For statement on page 48) all data objects
must be declared. A data declaration introduces a constant, a variable or a persistent
by associating an identifier with a data type. Refer to 5.1 Parameter declarations on
page 52 for information on parameter declarations. A data declaration can be
represented by the placeholder <DDN>.

<data declaration> ::=

[LOCAL] (<variable declaration>
| <persistent declaration>
| <constant declaration>)

| TASK (<variable declaration>
| <persistent declaration>

| <comment>

| <DDN>

A persistent (data object) can be described as a "persistent” variable. While a variable
value is lost (re-initialised) at the beginning of each new session - at module load
(module variable) or routine call (routine variable) - a persistent keeps its value
between sessions. This is accomplished by letting an update of the value of a persistent
automatically lead to an update of the initialization value of the persistent declaration.
When a module (or task) is saved, the initialization value of any persistent declaration
reflects the current value of the persistent. In addition, persistents are stored in a system
public "database"” and can be accessed (updated, referenced) by other components of
the control system.

Data declarations can occur in the heading section of modules (see 9 Task modules on
page 79) and routines (see 5 Routine declarations on page 51).

The optional local directive classifies the data object being local, otherwise global (see

2.20 Scope rules on page 23). Note that the local directive only may be used at module
level (not inside a routine).

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Lexical elements

The optional task directive classifies persistent data objects and variable data objects
being task global as opposed to system global. In the scope rules there is no difference
between the two global types.

However the current value of a task global persistents will always be unique to the task
and not shared among other tasks. System global persistents in different tasks share
current value if they are declared with the same name and type.

Declaring a variable as task global will only be effective in a module that’s installed
shared. System global variables in loaded or installed modules are already unique to
the task and not shared among other tasks.

Note that the task directive only may be used at module level (not inside a routine).

e.g. LOCAL VAR num counter;- variable declaration
CONST num maxtemp := 39.5;- constant declaration
PERS pos refpnt := [100.23, 778.55, 1183.98];- persistent declaration
TASK PERS num lasttemp := 19.2;- persistent declaration
<DDN?> - declaration placeholder

2.19 Predefined data objects

A predefined data object is supplied by the system and is always available. Predefined
data objects are automatically declared and can be referenced from any module. Refer
to appendix C for the description of built-in data objects.

2.20 Scope rules

The scope of a data object denotes the area in which the object is visible and is
determined by the context and position of its declaration.

The scope of a predefined data object comprises any RAPID module.

RAPID kernel 23

Lexical elements

A data object declared outside any routine is called a module data object (module
variable, module constant or persistent). The following scope rules are valid for
module data objects:

- The scope of a local module data object comprises the module in which it is
contained.

- The scope of a global module data object in addition comprises any other
module in the task buffer.

- Within its scope a module data object hides any predefined object with the same
name.

- Within its scope a local module data object hides any global module object with
the same name.

- Two module objects declared in the same module may not have the same name.

- Two global objects declared in two different modules in the task buffer may not
have the same name.

- A global data object and a module may not share the same name.
A data object declared inside a routine is called a routine data object (routine variable

or routine constant). Note that the concept of routine data objects in this context also
comprises routine parameters (see 5.1 Parameter declarations on page 52).

The following scope rules are valid for routine data objects:

- The scope of a routine data object comprises the routine in which it is contained.

- Within its scope a routine data object hides any predefined or user defined
object with the same name.

- Two routine data objects declared in the same routine may not have the same
name.

- A routine data object may not have the same name as a label declared in the
same routine.

- Refer to 5 Routine declarations on page 51 and 9 Task modules on page 79 for
information on routines and task modules.

2.21 Storage class

24

The storage class of a data object determines when the system allocates and deallocates
memory for the data object. The storage class of a data object is determined by the kind
of data object and the context of its declaration and can be either static or volatile.

Constants, persistents and module variables are static. The memory needed to store the
value of a static data object is allocated when the module that declares the object is
loaded (see 9 Task modules on page 79). This means that any value assigned to a
persistent or a module variable always remains unchanged until the next assignment.

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Lexical elements

Routine variables (and in parameters, see 5.1 Parameter declarations on page 52) are
volatile. The memory needed to store the value of a volatile object is allocated first
upon the call of the routine in which the declaration of the variable is contained. The
memory is later deallocated at the point of the return to the caller of the routine. This
means that the value of a routine variable is always undefined before the call of the
routine and is always lost (becomes undefined) at the end of the execution of the
routine.

In a chain of recursive routine calls (a routine calling itself directly or indirectly) each
instance of the routine receives its own memory location for the "same" routine
variable - a number of instances of the same variable are created.

2.22 Variable declarations

A variable is introduced by a variable declaration.
<variable declaration> ::=

VAR <data type> <variable definition> ’;’
<variable definition> ::=

<identifier> [*{" <dim> {’,” <dim>} "}’]

[;=" <constant expression>]

<dim> ::= <constant expression>
e.g. VAR num x;

VAR pos curpos := [b+1, cy, 0];

Variables of any type (including installed types) can be given an array (of degree 1, 2
or 3) format by adding dimension information to the declaration. The dimension
expression must represent an integer value (see Num type on page 16) greater than 0.

e.g. I pos (14 x 18) matrix
VAR pos pallet{14, 18};

Variables with value types (see 2.16 Data type value classes on page 19) may be
initialized (given an initial value). The data type of the constant expression used to
initialize a variable must be equal to the variable type.

e.g. VAR string author_name := "John Smith";
VAR pos start :=[100, 100, 50];
VAR num maxno{10} :=11,2,3,9,8,7,6,5, 4, 3];

An uninitialised variable (or variable component/element) receives the following

initial value.
Data Type Initial Value
num (or alias for num) 0
bool (or alias for bool) FALSE

string (or alias for string) | ™

Installed atomic types all bits 0’ed

RAPID kernel 25

Lexical elements

As descibed in chapter 2.18 Data declarations on page 22, variables can be declared as
local, task or system global.

2.23 Persistent declarations

26

A persistent is introduced by a persistent declaration. Note that persistents can only be
declared at module level (not inside a routine). A persistent can be given any value data

type.

<persistent declaration> ::=
PERS <data type> <persistent definition>’;’

<persistent definition> ::=
<identifier> [*{’ <dim> {’,” <dim>} "}’]
[:=" <literal expression>]
Note! The literal expression may only be omitted for system global persistents.

e.g. PERS num pcounter := 0;

Persistents of any type (including installed types) can be given an array (of degree 1, 2
or 3) format by adding dimension information to the declaration. The dimension
expression must represent an integer value (see Num type on page 16) greater than 0.

e.g. 12 X 2 matrix
PERS num grid{2, 2} :=[[O0, 0], [0, 0]];

As described in chapter 2.18 Data declarations on page 22, persistents can be declared
as local, task global or system global. Local and task global persistents must be
initialized (given an initial value). For system global persistents the initial value may
be omitted. The data type of the literal expression used to initialize a persistent must be
equal to the persistent type. Note that an update of the value of a persistent
automatically leads to an update of the initialization expression of the persistent
declaration (if not omitted).

e.g. MODULE ...
PERS pos refpnt := [0, 0, 0];

'r'éfpnt =[xy zl;
ENDMODULE
If the value of the variables X, y and z at the time of execution
is 100.23, 778.55 and 1183.98 respectively and the module is

saved, the saved module will look like this:

MODULE ...
PERS pos refpnt := [100.23, 778.55, 1183.98];

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2204-2008 ABB. All rights reserved.

Lexical elements

refpnt ;= [x, Y, Z];
ENDMODULE

A persistent without initial value (or persistent component/element) receives the
following initial value.

Data Type Initial Value
num (or alias for num) 0
bool (or alias for bool) FALSE

string (or alias for string) | ™

Installed atomic types all bits 0’ed

2.24 Constant declarations

A constant represents a static value and is introduced by a constant declaration. The
value of a constant cannot be modified. A constant can be given any value data type.

<constant declaration> ::=
CONST <data type> <constant definition>’;’
<constant definition> ::=
<identifier> ["{’ <dim> {’,” <dim>} "}’]
’:=’ <constant expression>
<dim> ::= <constant expression>

e.g. CONST num pi := 3.141592654;
CONST num siteno := 9;

A constant of any type (including installed types) can be given an array (of degree 1,
2 or 3) format by adding dimensioning information to the declaration. The dimension
expression must represent an integer value (see Num type on page 16) greater than 0.
The data type of the constant value must be equal to the constant type.

e.g. CONST pos seg{3} :=[[614, 778, 1020],

[914, 998, 1021],
[814, 998, 1022]];

RAPID kernel 27

Lexical elements

"pantasal sIyBU || "agv 8002-¥002 WP1AdoD ©

RAPID kernel

28

© Copyright 2004-2008 ABB. All rights reserved.

Expressions

3 EXxpressions

An expression specifies the evaluation of a value. An expression can be represented by
the placeholder <EXP>.

<expression> ::=

<expr>

| <EXP>
<expr>::= [NOT] <logical term> { (OR | XOR) <logical term> }
<logical term> ::= <relation> { AND <relation> }
<relation> ::= <simple expr> [<relop> <simple expr>]
<simple expr> ::= [<addop>] <term> { <addop> <term> }
<term> ::= <primary> { <mulop> <primary> }
<primary> ::=

<literal>

| <variable>

| <persistent>

| <constant>

| <parameter>

| <function call>

| <aggregate>

| (" <expr>")’
<relop> ;=< |’<=" | ’=" | ’>7 | '>=7 | <>
<addop> ::="+7|’-’
<mulop> ::="*" |’/ | DIV | MOD

The relative priority of the operators determines the order in which they are evaluated.
Parentheses provide a means to override operator priority. The rules above imply the
following operator priority:

*/ DIV MOD - highest
+ -
< > <> <= >= =
AND
XOR OR NOT - lowest

An operator with high priority is evaluated prior to an operator with low priority.
Operators of the same priority are evaluated from left to right.

Examples of evaluation order:

e.g.
a+b+c-->(a+b)+c--left to right rule
a+b*c-->a+ (b*c)--*higher than +
a OR b OR c--> (a OR b) OR c-- Left to right rule
a AND b OR ¢ AND d--> (a AND b) OR (c AND d)
a<b ANDc<d-->(a<b) AND (c<d)

RAPID kernel 29

Expressions

The left operand of a binary operator Dis evaluated prior to the right operand. Note that
the evaluation of expressions involving AND and OR operators is optimised so that the
right operand of the expression will not be evaluated if the result of the operation can
be determined after the evaluation of the left operand.

3.1 Constant expressions
Constant expressions are used to represent values in data declarations.
<constant expression> ::= <expression>

A constant expression is a specialization of an ordinary expression. It may not at any
level contain:

- Variables, Persistents
- Function calls
e.g. CONST num radius := 25;
CONST num pi := 3.141592654;

I constant expression
CONST num area := pi * radius * radius;

3.2 Literal expressions
Literal expressions are used to represent initialization values in persistent declarations.
<literal expression> ::= <expression>
A literal expression is a specialization of an ordinary expression. It may only contain
either a single literal value (+ or - may precede a num literal) or a single aggregate with

members that in turn are literal expressions.

e.g. PERS pos refpnt :=[100, 778, 1183];
PERS num diameter := 24.43;

3.3 Conditional expressions
Conditional expressions are used to represent logical values.
<conditional expression> ::= <expression>

A conditional expression is a specialization of an ordinary expression. The resulting
type must be bool (TRUE/FALSE).

e.g. counter >5 OR level <0 - conditional expression

1. An operator that takes two operands, i.e. +, -, * etc.

30 RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Expressions

3.4 Literals

A literal is a lexical element (indivisible) that represents a constant value of a specific
data type.

<literal> ::= <num literal>
| <string literal>
| <bool literal>

e.g. 0.5, 1E2 - num literals
"limit" - string literal
TRUE - bool literal
3.5 Variables

Depending on the type and dimension of a variable it may be referenced in up to three
different ways. A variable reference may mean the entire variable, an element of a
variable (array) or a component of a variable (record).

<variable> ::=
<entire variable>
| <variable element>
| <variable component>

A variable reference denotes, depending on the context, either the value or the location
of the variable.

Entire variable
An entire variable is referenced by the variable identifier.
<entire variable> ::= <ident>
If the variable is an array the reference denotes all elements. If the variable is a record
the reference denotes all components. Note that the placeholder <ID> (see 2.3
Identifiers on page 10) cannot be used to represent an entire variable.

e.g. VAR num row{3};
VAR num column{3};

I array assignment
row := column;

RAPID kernel 31

Expressions

Variable element

An array variable element is referenced using the index number of the element.
<variable element> ::= <entire variable> *{’ <index list> "}’

<index list> ::= <expr> {’,” <expr> }

An index expression must represent an integer value (see Num type on page 16) greater
than 0. Index value 1 selects the first element of an array. An index value may not
violate the declared dimension. The number of elements in the index list must fit the
declared degree (1, 2 or 3) of the array.

e.g. column{10}- reference of the tenth element of column

mat{i * 10, j}- reference of matrix element

Variable component

A record variable component is referenced using the component name (hames).
<variable component> ::= <variable> ’.” <component name>
<component name> ::= <ident>

Note that the placeholder <ID> (see 2.3 Identifiers on page 10) cannot be used to
represent a component name.

e.g. home.y - referencing the Y component of
a pos variable
parr{i+2}.x - referencing the X component of an
element of a pos array
pl.trans.x - referencing a component (x) of

another component (trans)

3.6 Persistents

32

A persistent reference may mean the entire persistent, an element of a persistent (array)
or a component of a persistent (record).

<persistent> ::=
<entire persistent>
| <persistent element>
| <persistent component>

The rules concerning persistent references comply with the rules concerning variable

references Entire variable on page 31, Variable element on page 32 and Variable
component on page 32.

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Expressions

3.7 Constants

A constant reference may mean the entire constant, an element of a constant (array) or
a component of a constant (record).

<constant> ::=
<entire constant>
| <constant element>
| <constant component>

The rules concerning constant references comply with the rules concerning variable
references Entire variable on page 31, Variable element on page 32 and Variable
component on page 32.

3.8 Parameters

A parameter reference may mean the entire parameter, an element of a parameter
(array) or a component of a parameter (record).

<parameter> ::=
<entire parameter>
| <parameter element>
| <parameter component>

The rules concerning parameter references comply with the rules concerning variable
references Entire variable on page 31, Variable element on page 32 and Variable
component on page 32.

3.9 Aggregates

An aggregate denotes a composite value, i.e. an array or record value. Each aggregate
member is specified by an expression.

<aggregate> ::="[" <expr>{’, <expr>}’]’

e.g. [X,y, 2*X] -- pos aggregate
["john", "eric", "lisa"] -- string array aggregate
[[100,100,01,[0, 0, z]]-- pos array aggregate
[[1, 2, 3], [a, b, c]] -- num matrix (2*3) aggregate

The data type of an aggregate is (must be able to be) determined by the context. The
data type of each aggregate member must be equal to the type of the corresponding
member of the determined type.

e.g.

VAR pos p1,;
pl:=[1,-100, 12];-- Aggregate type pos - determined by p1

RAPID kernel 33

Expressions

IF [1,-100,12] = [a,b,b] THEN-- Illegal since the data type of neither of the
aggregates can be determined by the
context

3.10 Function calls

34

A function call initiates the evaluation of a specific function and receives the value
returned by the function. Functions can be either predefined or user defined.

<function call> ::= <function> *(’ [<function argument list>])’
<function> ::= <ident>

The arguments of a function call is used to transfer data to (and possibly from) the
called function. Arguments are evaluated from left to right. The data type of an
argument must be equal to the type of the corresponding parameter (see 5.1 Parameter
declarations on page 52) of the function. An argument may be either required, optional
or conditional. Optional arguments may be omitted but the order of the (present)
arguments must be the same as the order of the parameters. Two or more parameters
may be declared to mutually exclude each other, in which case at most one of them may
be present in the argument list. Conditional arguments are used to support smooth
propagation of optional arguments through chains of routine calls.

<function argument list> ::=

<first function argument> { <function argument> }
<first function argument> ::=

<required function argument>

| <optional function argument>

| <conditional function argument>

<function argument> ::=
’,” <required function argument>
| <optional function argument>
| >,” <optional function argument>
| <conditional function argument>
| >,” <conditional function argument>
<required function argument> ::=
[<ident>’:="] <expr>
<optional function argument> ::=
'\’ <ident> [":=" <expr>]
<conditional function argument> ::=
'\’ <ident> ’?” <parameter>

A required argument is separated from a preceding (if any) argument by ",". The
parameter name may be included, or left out.

e.g. polar(3.937, 0.785398) - two required arguments

polar(dist := 3.937, angle := 0.785398) - .. using names

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Expressions

An optional or conditional argument is preceded by ’\” and the parameter name. The
specification of the parameter name is mandatory. Switch (See 5.1 Parameter
declarations on page 52) type arguments are somewhat special; they are used only to
signal presence (of an argument). Switch arguments do therefore not include any
argument expression. Switch arguments may be propagated using the conditional
syntax.

e.g. cosine(45) - one required argument
cosine(0.785398\rad) - .. and one switch
(optional)
dist(pnt:=p2) - one required argument
dist(\base:=p1, pnt:=p2) - .. and one optional

A conditional argument is considered to be "present” if the specified optional
parameter (of the calling function) is present (see 5.1 Parameter declarations on page
52), otherwise it is simply considered to be "omitted". Note that the specified
parameter must be optional.
e.g. distance := dist(\base ? b, p);

.. is interpreted as

distance := dist(\base := b, p);

.. if the optional parameter b is present otherwise as

distance := dist(p);

The concept of conditional arguments thus eliminates the need for multiple "versions”
of routine calls when dealing with propagation of optional parameters.

e.g. IF Present(b) THEN
distance := dist(\base:=b, p);
ELSE
distance := dist(p);
ENDIF

More than one conditional argument may be used to match more than one alternative
of mutually excluding parameters (see 5.1 Parameter declarations on page 52). In that
case at most one of them may be "present” (may refer a present optional parameter).
e.g. The function

FUNC bool check (\switch on | switch off, ...

.. thus may be called as

check(\on ? high \ off ? low, ...

.. if at most one of the optional parameters “high” and *low’ are
present.

RAPID kernel 35

Expressions

The parameter list (see 5.1 Parameter declarations on page 52) of a function assigns
each parameter an access mode. The access mode of a parameter puts restrictions on a
corresponding argument and specifies how RAPID transfers the argument. Please refer
to 5 Routine declarations on page 51 for the full description on routine parameters,

access modes and argument restrictions.

3.11 Operators

The tables below view the available operators divided into 4 classes:

- Multiplying operators
- Adding operators

- Relational operators

- Logical operators

The tables specify the legal operand types and the result type of each operator. Note that
the relational operators = and <> are the only operators valid for arrays. The use of

operators in combination with operands of types not equal to (see 2.17 Equal types on
page 22) the types specified below will cause a type error (see 1.4 Error classification
on page 6).

Multiplication operators

Operator Operation Operand types Result type

* multiplication num * num num Y
* scalar vector multiplication num * pos or pos * num pos
* vector product pos * pos pos
* linking of rotations orient * orient orient
/ division num / num num

div integer division num 2 div num ? num

mod (integer) modulo num ? mod num ¥ num

1) Preserves integer (exact) representation (see Num type on page 16) as long as operands and result are kept within the integer sub-
domain of the num type.

2) Must represent an integer (see Num type on page 16) value.

3) Must represent a positive (> 0) integer value.

36

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2904-2008 ABB. All rights reserved.

Addition operators

Expressions

Operator Operation Operand types Result type

+ addition num + num num 2

+ unary plus ; keep sign +num or +pos same b 2

+ vector addition pos + pos pos

+ string concatenation string + string string

- subtraction num - num num 2

- unary minus ; change sign -num or -pos same V) 2

- vector subtraction pos - pos pos

1) The result receives the same data type as the operand. If the operand has an alias data type (see 2.15 Alias types on page 19) the result
receives the alias "base" type (num or pos).
2) Preserves integer (exact) representation (see Num type on page 16) as long as operands and result are kept within the integer sub-
domain of the num type.

Relational operators

Operator Operation Operand types Result type
< less than num < num bool
<= less than or equal to num <= num bool
= equal to anytype U = anytype 9 bool
>= greater than or equal to num >= num bool
> greater than num > num bool
<> not equal to anytype D <> anytype V) bool

1) Only value and semivalue data types (see 2.16 Data type value classes on page 19). Operands must have equal types.

Logical operators

Operator Operation Operand types Result type
and and bool and bool bool
Xor exclusive or bool xor bool bool
or or bool or bool bool
not unary not - negation not bool bool

RAPID kernel

37

Expressions

"pantasal sIyBU || "agv 8002-¥002 WP1AdoD ©

RAPID kernel

38

© Copyright 2004-2008 ABB. All rights reserved.

Statements

4 Statements

The concept of using installed routines (and types) to support the specific needs of the
IRB application programmer has made it possible to limit the number of RAPID
statements to a minimum. The RAPID statements support general programming needs
and there are really no IRB specific RAPID statements. Statements may only occur
inside a routine definition.

<statement> ::=
<simple statement>
| <compound statement>
| <label>
| <comment>
| <SMT>

A statement is either simple or compound. A compound statement may in turn contain
other statements. A label is a "'no operation” statement that can be used to define named
(goto-) positions in a program. The placeholder <SMT> can be used to represent a
statement.

<simple statement> ::=

<assignment statement>

| <procedure call>

| <goto statement>

| <return statement>

| <raise statement>

| <exit statement>

| <retry statement>

| <trynext statement>

| <connect statement>
<compound statement> ::=

<if statement>

| <compact if statement>

| <for statement>

| <while statement>

| <test statement>

RAPID kernel 39

Statements

4.1 Statement termination

Compound statements (except for the compact if statement) are terminated by
statement specific keywords. Simple statements are terminated by a semicolon (;).
Labels are terminated by a colon (). Comments are terminated by a newline character
(see 2.10 Comments on page 13). Statement terminators are considered to be a part of
the statement.

e.g. WHILE index < 100 DO

I Loop start - newline terminates a comment

next: - """ terminates a label

index :=index + 1;- ;" terminates assignment statement
ENDWHILE - "endwhile" terminates the while statement

4.2 Statement lists

40

A sequence of zero or more statements is called a statement list. The statements of a
statement list are executed in succession unless a goto, return, raise, exit, retry or
trynext statement, or the occurrence of an interrupt or error causes the execution to
continue at another point.

<statement list> ::= { <statement> }

Both routines and compound statements contain statement lists. There are no specific
statement list separators. The beginning and end of a statement list is determined by the
context.

e.g. IFa>bTHEN
posl :=a™* pos2; - start of statement list

I this is a comment

pos2 := home; - end of statement list
ENDIF

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Statements

4.3 Label statement
Labels are "no operation™ statements used to define named program positions. The
goto statement (see 4.6 Goto statement on page 44) causes the execution to continue
at the position of a label.
<label> ::= <identifier> .’

e.g. next:

éOTO next;
The following scope rules are valid for labels:

- The scope of a label comprises the routine in which it is contained.

- Within its scope a label hides any predefined or user defined object with the
same name.

- Two labels declared in the same routine may not have the same name.

- A label may not have the same name as a routine data object declared in the
same routine.

4.4 Assignment statement

The assignment statement is used to replace the current value of a variable, persistent
or parameter (assignment target) with the value defined by an expression. The
assignment target and the expression must have equal types. Note that the assignment
target must have value or semivalue data type (see 2.16 Data type value classes on
page 19). The assignment target can be represented by the placeholder <VAR>.

<assignment statement> ::= <assignment target> *:=’" <expression>’;’
<assignment target> ::=

<variable>

| <persistent>

| <parameter>

| <VAR>

e.g. count := count +1; - entire variable assignment
home.x := x * sin(30); - component assignment
matrix{i, j} ;= temp; - array element assignment
posarr{i}.y := X; - array element/component

assignment
<VAR>:=temp +5; - placeholder use

RAPID kernel 41

Statements

4.5 Procedure call

42

A procedure call initiates the evaluation of a procedure. After the termination of the
procedure the evaluation continues with the subsequent statement. Procedures can be
either predefined or user defined. The placeholder <ARG> may be used to represent
an undefined argument.

<procedure call> ::= <procedure> [<procedure argument list>]’;’
<procedure> ::=

<identifier>

| %’ <expression> %’
<procedure argument list> ::=

<first procedure argument> { <procedure argument> }

<first procedure argument> ::=

<required procedure argument>

| <optional procedure argument>

| <conditional procedure argument>

| <ARG>
<procedure argument> ::=

’,” <required procedure argument>

| <optional procedure argument>

| >, <optional procedure argument>

| <conditional procedure argument>

| >,” <conditional procedure argument>

|, <ARG>
<required procedure argument> ::=

[<identifier> *:="] <expression>
<optional procedure argument> ::=

'\’ <identifier> [*:=" <expression>]
<conditional procedure argument> ::=

'\’ <identifier> ’?” (<parameter> | <VAR>)

The procedure (name) may either be statically specified by using an identifier (early
binding) or evaluated during runtime from a (string type) expression (late binding).
Even though early binding should be considered to be the "normal™ procedure call
form, late binding sometimes provides very efficient and compact code.

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Statements

e.g. I early binding
test product_id
case 1:
procl x, Y, z;
case 2:
proc2 X, Y, zZ;
case 3:

I same example using late binding
% "proc” + NumToStr(product_id, 0) % X, y, z;

I same example again using another variant of late binding
VAR string procname {3} :=["procl”, "proc2", "proc3"];

% procname{product_id} % X, y, z;

Note that late binding is available for procedure calls only, not for function calls.
The general rules concerning the argument list of the procedure call are exactly the
same as those of the function call. Please refer to 3.10 Function calls on page 34 and
5 Routine declarations on page 51 for more details.
e.g. move t1, pos2, mv; .. procedure call

move tool := t1, dest := pos2, movedata := mv;.. with names

move \reltool, t1, dest, mv; .. with switch ’reltool’

move \reltool, t1, dest, mv \speed := 100;.. with optional
speed’

move \reltool, t1, dest, mv \time := 20;.. with optional "time’

Normally the procedure reference is solved (bind) according to the normal scope
rules, but late binding provide a way to do a deviation from that rule.

The string expression in the statement %<expression>% is in the normal case a string
with the name of a procedure found according to the scope rules, but the string could
also have an enclosing description prefix that specify the location of the routine.

"namel:name2" specify the procedure "name2" inside the module "namel™ (note that
the procedure "name2" could be declared local in that module). ":name2" specify the
global procedure "name2" in one of the task modules, this is very useful when a
downwards call must be done from the system level (installed built in object).

RAPID kernel 43

Statements

4.6 Goto statement

The goto statement causes the execution to continue at the position of a label.
<goto statement> ::= GOTO <identifier>’;’
A goto statement may not transfer control into a statement list.

e.g. next:
i=i+1;

éOTO next;

4.7 Return statement

44

The return statement terminates the execution of a routine and, if applicable, specifies
areturn value. A routine may contain an arbitrary number of return statements. A return
statement can occur anywhere in the statement list or the error or backward handler of
the routine and at any level of a compound statement. The execution of a return
statement in the entry (see 9 Task modules on page 79) routine of a task terminates the
evaluation of the task. The execution of a return statement in a trap (see 8.3 Trap
routines on page 76) routine resumes execution at the point of the interrupt.

<return statement> ::= RETURN [<expression>]’;’

The expression type must be equal to the type of the function. Return statements in
procedures and traps must not include the return expression.

e.g. FUNC num abs_value (num value)
IF value <0 THEN
RETURN -value;
ELSE
RETURN value;
ENDIF
ENDFUNC

PROC message (string mess)

write printer, mess;

RETURN; - might have been left out
ENDPROC

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Statements

4.8 Raise statement
The raise statement is used to explicitly raise or propagate an error.

<raise statement> ::= RAISE [<error number>]’;’
<error number> ::= <expression>

A raise statement that includes an explicit error number raises an error with that
number. The error number (see 7 Error recovery on page 61) expression must represent
an integer value (see Num type on page 16) in the range from 1 to 90. A raise statement
including an error number must not appear in the error handler of a routine.

A raise statement with no error number may only occur in the error handler of a routine
and raises again (reraises) the same (current) error at the point of the call of the routine,
i.e. propagates the error. Since a trap routine can only be called by the system (as a
response to an interrupt), any propagation of an error from a trap routine is made to the
system error handler (see 7 Error recovery on page 61).

e.g. CONST errnum escape := 10;
iiAISE escape; - recover from this position
ERROR
IF ERRNO = escape THEN
RETURN val2;
ENDIF
ENDFUNC

4.9 Exit statement
The exit statement is used to immediately terminate the execution of a task.
<exit statement> ::= EXIT ’;’

Task termination using the exit statement, unlike returning from the entry routine of
the task, in addition prohibits any attempt from the system to automatically restart the

task.

e.g. TEST state
CASE ready:
DEFAULT :

I illegal/unknown state - abort
write console, "Fatal error: illegal state™;
EXIT,

ENDTEST

RAPID kernel 45

Statements

4.10 Retry statement

The retry statement is used to resume execution after an error, starting with
(reexecuting) the statement that caused the error.

<retry statement> ::= RETRY ’;’

The retry statement can only appear in the error handler of a routine.

e.g.
I open logfile
open \append, logfile, "temp.log";

ERROR
IF ERRNO = ERR_FILEACC THEN
I create missing file
create "temp.log";
I resume execution
RETRY;
ENDIF
I propagate "unexpected™ error
RAISE;
ENDFUNC

4.11 Trynext statement

The trynext statement is used to resume execution after an error, starting with the
statement following the statement that caused the error.

<trynext statement> ::= TRYNEXT ’;’

The trynext statement can only appear in the error handler of a routine.

e.g.
I Remove the logfile
delete logfile;

ERROR
IF ERRNO = ERR_FILEACC THEN
I Logfile already removed - Ignore
TRYNEXT;
ENDIF
I propagate "unexpected" error
RAISE;
ENDFUNC

46 RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Statements

4.12 Connect statement

The connect statement allocates an interrupt number, assigns it to a variable or
parameter (connect target) and connects it to a trap routine. When (if) an interrupt with
that particular interrupt number later occurs the system responds to it by calling the
connected trap routine. The connect target can be represented by the placeholder
<VAR>,

<connect statement> ::= CONNECT <connect target> WITH <trap>’;’
<connect target> ::=

<variable>

| <parameter>

| <VAR>
<trap> ::= <identifier>

The connect target must have num (or alias for num) type and must be (or represent) a
module variable (not a routine variable). If a parameter is used as connect target it must
be a VAR or INOUT/VAR parameter - see 5.1 Parameter declarations on page 52). An
allocated interrupt number cannot be "disconnected"” or connected with another trap
routine. The same connect target may not be associated with the same trap routine more
than once. This means that the same connect statement may not be executed more than
once and that only one of two identical connect statements (same connect target and
same trap routine) may be executed during a session. Note though, that more than one
interrupt number may be connected with the same trap routine.

e.g. PROC main()
VAR intnum hp;

EONNECT hp WITH high_pressure;
ENDPROC
TRAP high_pressure

close_valve\fast;

RETURN;
ENDTRAP

4.13 If statement

The if statement evaluates one or none of a number of statement lists, depending on the
value of one or more conditional expressions.

<if statement> ::=
IF <conditional expression> THEN <statement list>
{ELSEIF <conditional expression>
THEN <statement list> | <EIT> }
[ELSE <statement list>]
ENDIF

RAPID kernel 47

Statements

The conditional expressions are evaluated in succession until one of them evaluates to
true. The corresponding statement list is then executed. If none of them evaluates to
true the (optional) else clause is executed. The placeholder <EIT> can be used to
represent an undefined elseif clause.

e.g. IF counter > 100 THEN
counter := 100;
ELSEIF counter <0 THEN

counter :=0;
ELSE

counter := counter + 1;
ENDIF

4.14 Compact IF statement

In addition to the general, structured if-statement presented above (4.13 If statement on
page 47), RAPID provides an alternative, compact if statement. The compact if
statement evaluates a single, simple statement if a conditional expression evaluates to
true.

<compact if statement> ::=
IF <conditional expression> (<simple statement> | <SMT>)

The placeholder <SMT> can be used to represent an undefined simple statement.
e.g. IF ERRNO = escapel GOTO next;

4.15 For statement

48

The for statement repeats the evaluation of a statement list while a loop variable is
incremented (or decremented) within a specified range. An optional step clause makes
it possible to select the increment (or decrement) value.

The loop variable:

- is declared (with type num) by its appearance.

- has the scope of the statement list (do .. endfor).

- hides any other object with the same name.

- is readonly, i.e. cannot be updated by the statements of the for loop.

<for statement> ::=
FOR <loop variable> FROM <expression>
TO <expression> [STEP <expression>]
DO <statement list> ENDFOR

<loop variable> ::= <identifier>
Initially the from, to and step expressions are evaluated and their values are kept. They

are evaluated only once. The loop variable is initiated with the from value. If no step
value is specified it defaults to 1 (or -1 if the range is descending).

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Statements

Before each new (not the first) loop, the loop variable is updated and the new value is
checked against the range. As soon as the value of the loop variable violates (is outside)
the range the execution continues with the subsequent statement.

The from, to and step expressions must all have num (numeric) type.
e.g. FORiFROM 10 TO 1 STEP -1 DO

a{i} = b{i};
ENDFOR

4.16 While statement

The while statement repeats the evaluation of a statement list as long as the specified
conditional expression evaluates to true.

<while statement> ::=
WHILE <conditional expression> DO
<statement list> ENDWHILE

The conditional expression is evaluated and checked before each new loop. As soon as
it evaluates to false the execution continues with the subsequent statement.

e.g. WHILE a<b DO

a=a+1;
ENDWHILE

4.17 Test statement

The test statement evaluates one or none of a number of statement lists, depending on
the value of an expression.

<test statement> ::=
TEST <expression>
{ CASE <test value> { ’,” <test value> } -’
<statement list>) | <CSE> }
[DEFAULT ’:’<statement list>]
ENDTEST

<test value> ::= <expression>

Each statement list is preceded by a list of test values, specifying the values for which
that particular alternative is to be selected. The test expression can have any value or
semivalue data type (see 2.16 Data type value classes on page 19). The type of a test
value must be equal to the type of the test expression. The execution of a test statement
will choose one or no alternative. In case more than one test value fits the test
expression only the first is recognized. The placeholder <CSE> can be used to
represent an undefined case clause.

RAPID kernel 49

Statements

The optional default clause is evaluated if no case clause fits the expression.

e.g. TEST choice
CASE 1,2,3:
pick number := choice;
CASE 4:
stand_by;
DEFAULT:
write console, "lllegal choice";
ENDTEST

50 RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Routine declarations

5 Routine declarations

Aroutine is a named carrier of executable code. A user routine is defined by an RAPID
routine declaration. A predefined routine is supplied by the system and is always
available. There are three types of routines - procedures, functions and traps. A
function returns a value of a specific type and is used in expression context (see 3.10
Function calls on page 34). A procedure does not return any value and is used in
statement context (see 4.5 Procedure call on page 42). Trap routines provide a means
to respond to interrupts (see 8 Interrupts on page 75). A trap routine can be associated
with a specific interrupt (using the connect statement - see 4.12 Connect statement on
page 47) and is then later automatically executed if that particular interrupt occurs. A
trap routine can never be explicitly called from RAPID code. A routine declaration can
be represented by the placeholder <RDN>,

<routine declaration> ::=
[LOCAL] (<procedure declaration>
| <function declaration>
| <trap declaration>)
| <comment>
| <RDN>

The declaration of a routine specifies its:

- Name
- Data Type (only valid for functions)
- Parameters (not for traps)
- Data Declarations and Statements (body)
- Backward Handler (only valid for procedures)
- Error Handler
- Undo Handler
Routine declarations may only occur in the last section of a module (see 9 Task

modules on page 79). Routine declarations cannot be nested, i.e. it is not possible to
declare a routine inside a routine declaration.

The optional local directive of a routine declaration classifies a routine to be local,
otherwise it is global (see 5.2 Scope rules on page 54).

RAPID kernel 51

Routine declarations

5.1 Parameter declarations

The parameter list of a routine declaration specifies the arguments (actual parameters)
that must/can be supplied when the routine is called. Parameters are either required or
optional. An optional parameter may be omitted from the argument list of a routine call
(see 2.20 Scope rules on page 23). Two or more optional parameters may be declared
to mutually exclude each other, in which case at most one of them may be present in a
routine call. An optional parameter is said to be present if the routine call supplies a
corresponding argument, not present otherwise. The value of a not present, optional
parameter may not be set or used. The predefined function Present can be used to test
the presence of an optional parameter. The placeholders <PAR>, <ALT>, <DIM> can
be used to represent undefined parts of a parameter list.

<parameter list> ::=

<first parameter declaration> { <next parameter declaration> }
<first parameter declaration> ::=

<parameter declaration>

| <optional parameter declaration>

| <PAR>
<next parameter declaration> ::=

’,” <parameter declaration>

| <optional parameter declaration>

| ’,’<optional parameter declaration>

|’,” <PAR>
<optional parameter declaration> ::=

"\” (<parameter declaration> | <ALT>)

{’|” (<parameter declaration> | <ALT>) }

<parameter declaration> ::=
[VAR | PERS | INOUT] <data type>
<identifier>["'{" ("** {’) *" }) | <DIM> "}’]
| switch” <identifier>

The data type of an argument must be equal to the data type of the corresponding
parameter.

Each parameter has an access mode. Available access modes are in (default), var, pers,
inout and ref 1. The access mode specifies how RAPID transfers a corresponding
argument to a parameter:

- An in parameter is initialized with the value of the argument (expression). The
parameter may be used (e.g. assigned a new value) as an ordinary routine
variable.

- A var, pers, inout or ref parameter is used as an alias for the argument (data
object). This means that any update of the parameter is also an update of the
argument.

1. RAPID routines cannot have ref parameters, only predefined routines can.

52 RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Routine declarations

The specified access mode of a parameter restricts a corresponding argument as:

X Legal argument Access mode
--- Illegal argument

in | va | pers |inou | ref
r t
constant X X
readonly variable 2 | X X
variable X | X X
persistent X X X X
parameter:
in X [X |- |X X
var X |X |- |X X
§ pers X |- | X X X
£ | inout:
> | var X | X [P |x |X
< pers X - X X X
any other X |- | -
expression

a. e.g. FOR loop variables (see 4.15 For statement on page 48), errno, intno
(see C Appendix:).
b. Execution error (see 1.4 Error classification on page 6).

e.g. ..., INOUT num temp, ... - inout parameter

The built-in routines *I1sPers’ and ’IsVar’ can be used to test if an inout parameter is an
alias for a variable or persistent argument.

The special type *switch” may (only) be assigned to optional parameters and provides
a means to use "switch arguments”, i.e. arguments given only by their names (no
values). The domain of the switch type is empty and no value can be transferred to a
switch parameter. The only way to use a switch parameter is to check its presence using
the predefined function Present, or to pass it as an argument in a routine call.

e.g. PROC glue (\switch on | switch off, ... - switch parameters
IFHiDresent(off) THEN - check presence off
optional parameter ’off’
ENDPROC
glue\off, pos2; - argument use

RAPID kernel 53

Routine declarations

Arrays may be passed as arguments. The degree of an array argument must comply
with the degree of the corresponding parameter. The dimension of an array parameter
is "conformant” (marked by **”). The actual dimension is later bound by the dimension
of the corresponding argument of a routine call. A routine can determine the actual
dimension of a parameter using the predefined function *Dim’.

e.g. ..., VAR num pallet{**}, ... - num-matrix parameter

5.2 Scope rules

The scope of an object denotes the area in which the name is visible.
The scope of a predefined routine comprises any RAPID module.

The following scope rules are valid for user routines:

- The scope of a local user routine comprises the module in which it is contained.

- The scope of a global user routine in addition comprises any other module in
the task buffer.

- Within its scope a user routine hides any predefined object with the same name.

- Within its scope a local user routine hides any global module object with the
same name.

- Two module objects declared in the same module may not have the same name.

- Two global objects declared in two different modules in the task buffer may not
have the same name.

- A global user routine and a module may not share the same name.
The scope rules concerning parameters comply with the scope rules concerning routine
variables. Refer to 2.20 Scope rules on page 23 for information on routine variable
scope.

Refer to 9 Task modules on page 79 for information on task modules.

5.3 Procedure declarations

54

A procedure declaration binds an identifier to a procedure definition.

<procedure declaration> ::=
PROC <procedure name>
([<parameter list>] ")’
<data declaration list>
<statement list>
[BACKWARD <statement list>]
[ERROR [<error number list>] <statement list>]
[UNDO <statement list>]
ENDPROC

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Routine declarations

<procedure name> ::= <identifier>
<data declaration list> ::= { <data declaration> }

Note that a data declaration list can include comments (see 2.10 Comments on page
13).

The evaluation of a procedure is either explicitly terminated by a return statement (see
4.7 Return statement on page 44) or implicitly terminated by reaching the end
(ENDPROC, BACKWARD, ERROR or UNDO) of the procedure.

e.g. Multiply all elements of a num array by a factor:

PROC arrmul(VAR num array{*}, num factor)
FOR index FROM 1 TO Dim(array, 1) DO
array{index} := array{index} * factor;
ENDFOR
ENDPROC<-- implicit return

(the predefined *Dim’ function returns the dimension of an
array)

Procedures which are going to be used in late binding calls are treated as a special case.
I.e. the parameters for the procedures, which are called from the same late binding
statement, should be matching as regards optional/required parameters and mode, and
should also be of the same basic type. E.qg. if the second parameter of one procedure is
required and declared as VAR num then the second parameter of other procedures,
which are called by the same late binding statement, should have a second parameter
which is a required VAR with basic type num. The procedures should also have the
same number of parameters. If there are mutually exclusive optional parameters, they
also have to be matching in the same sense.

5.4 Function declarations
A function declaration binds an identifier to a function definition.

<function declaration> ::=
FUNC <data type>
<function name>
"(C [<parameter list>1])’
<data declaration list>
<statement list>
[ERROR [<error number list>] <statement list>]
[UNDO <statement list>]
ENDFUNC

<function name> ::= <identifier>

Functions can have (return) any value data type (including any available installed
type). A function cannot be dimensioned, i.e. a function cannot return an array value.

The evaluation of a function must be terminated by a return statement (see 4.7 Return
statement on page 44).

RAPID kernel 55

Routine declarations

e.g. Return the length of a vector:

FUNC num veclen(pos vector)
RETURN sqrt(quad(vector.x) + quad(vector.y) +
quad(vector.z));
ERROR
IF ERRNO = ERR_OVERFLOW THEN
RETURN maxnum;
ENDIF
I propagate "unexpected" error
RAISE;
ENDFUNC

5.5 Trap declarations

56

A trap declaration binds an identifier to a trap definition. A trap routine can be
associated with an interrupt (number) by using the connect statement (see 4.12 Connect
statement on page 47). Note that one trap routine may be associated with many (or no)
interrupts.

<trap declaration> ::=
TRAP <trap name>
<data declaration list>
<statement list>
[ERROR [<error number list>] <statement list>]
[UNDO <statement list>]
ENDTRAP

<trap name> ::= <identifier>

The evaluation of the trap routine is explicitly terminated using the return statement
(see 4.7 Return statement on page 44) or implicitly terminated by reaching the end
(endtrap, error or undo) of the trap routine. The execution continues at the point of the
interrupt.

e.g. Respond to low pressure interrupt:

TRAP low_pressure
open_valve\slow;
I return to point of interrupt
RETURN;

ENDTRAP

e.g. Respond to high pressure interrupt:

TRAP high_pressure
close_valve\fast;
I return to point of interrupt
RETURN,;

ENDTRAP

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Backward execution

6 Backward execution

RAPID supports stepwise, backward execution of statements. Backward execution is
very useful for debugging, test and adjustment purposes during RAPID program
development. RAPID procedures may contain a backward handler (statement list) that
defines the backward execution "behaviour™ of the procedure (call).

The following general restrictions are valid for Backward execution:

- Only simple (not compound) statements can be executed backwards.

- It is not possible to step backwards out of a routine at the top of it’s statement
list (and reach the routine call).

- Simple statements have the following backward behaviour:

- Procedure calls (predefined or user defined) can have any backward behaviour
- take some action, do nothing or reject ? the backward call. The behaviour is
defined by the procedure definition.

- The arguments of a procedure call being executed backwards are always (even
in case of reject) executed and transferred to the parameters of the procedure
exactly in the same way as is the case with forward execution. Argument
expressions (possibly including function calls) are always executed "forwards".

- Comments, labels, assignment statements and connect statements are executed
as "no operation" while all other simple statements rejects® backward
execution.

- 1) No support for backward step execution - no step is taken.

6.1 Backward handlers

Procedures may contain a backward handler that defines the backward execution of a
procedure call.

The backward handler is really a part of the procedure and the scope of any routine data
also comprises the backward handler of the procedure.

Example: PROC MoveTo ()
MoveL p1,v500,z10,tool1;
MoveC p2,p3,v500,z10,tool1;
Movel p4,v500,z10,tool1;
BACKWARD
MovelL p4,v500,z10,tool1;
MoveC p2,p3,v500,z10,to0l1;
Movel p1,v500,z10,tool1;
ENDPROC

RAPID kernel 57

Backward execution

When the procedure is called during forward execution, the following occurs:

PROC MoveTo ()

. Movel p1,v500,z10,tool1;
MoveTo; Lf\/m;);/? p2,p3,v500,z10,tool1;
. p4,v500,z10,tool1;

BACKWARD
MoveL p4,v500,z10,tool1;
MoveC p2,p3,v500,z10,to0l1;
MoveL p1,v500,z10,tool1;
ENDPROC

When the procedure is called during backwards execution, the following occurs:

PROC MoveTo ()
. Movel p1,v500,z10,tool1;
MoveTo; MoveC p2,p3,v500,z10,tool1;
Movel p4,v500,z10,tool1;
BACKWARD
Movel p4,v500,z10,tool1;
MoveC p2,p3,v500,z10,to0l1;
MoveL p1,v500,z10,tool1;
ENDPROC
Instructions in the backward or error handler of a routine may not be executed

backwards. Backward execution cannot be nested, i.e. two instructions in a call chain
may not simultaneously be executed backwards.

A procedure with no backward handler cannot be executed backwards. A procedure
with an empty backward handler is executed as “no operation”.

6.2 Limitation of move instructions in the backward handler

The move instruction type and sequence in the backward handler must be a mirror of
the move instruction type and sequence for forward execution in the same routine:

58 RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Backward execution

PROC MoveTo ()
Movel p1,v500,z10,too0l1;
MoveC p2,p3,v500,z10,tool1; :
Movel p4,v500,z10,tool1; A * Mirror plane
BACKWARD v
Movel p4,v500,z10,tool1; ‘
MoveC p2,p3,v500,z10,tool1;
Movel p1,v500,z10,tooll;
ENDPROC

Note that the order of CirPoint p2 and ToPoint p3 in the MoveC should be the same.
By move instructions is meant all instructions that result in some movement of the
robot or external axes such as MoveL, SearchC, TriggJ, ArcC, PaintL ...

result in faulty backward movement. Linear movement can result in circular

é Any departures from this programming limitation in the backward handler can
movement and vice versa, for some part of the backward path.

RAPID kernel 59

Backward execution

"pantasal sIyBU || "agv 8002-¥002 WP1AdoD ©

RAPID kernel

60

© Copyright 2004-2008 ABB. All rights reserved.

Error recovery

[/ Error recovery

An execution error (see 1.4 Error classification on page 6) is an abnormal situation,
related to the execution of a specific piece of RAPID program code. An error makes
further execution impossible (or at least hazardous). "Overflow" and "division by zero"
are examples of errors. Errors are identified by their unique error number and are
always recognized by the system. The occurrence of an error causes suspension of the
normal program execution and the control is passed to an error handler. The concept
of error handlers makes it possible to respond to, and possibly recover from errors that
arise during program execution. If further execution is not possible, at least the error
handler can assure that the task is given a graceful abortion.

7.1 Error handlers

Any routine may include an error handler. The error handler is really a part of the
routine and the scope of any routine data object (variable, constant, parameter) also
comprises the error handler of the routine. If an error occurs during the evaluation of
the routine the control is transferred to the error handler.

e.g. FUNC num safediv(hum x, numy)
RETURN x /y;
ERROR
IF ERRNO = ERR_DIVZERO THEN
I return max numeric value
RETURN max_num;
ENDIF
ENDFUNC

The predefined (readonly) variable ERRNO contains the error number of the (most
recent) error and can be used by the error handler to identify the error. After necessary
actions have been taken the error handler can:

- Resume execution starting with the statement in which the error occurred. This
is made using the RETRY statement (see 4.10 Retry statement on page 46).

- Resume execution starting with the statement after the statement in which the
error occurred. This is made using the TRYNEXT statement (see 4.11 Trynext
statement on page 46).

- Return control to the caller of the routine by using the RETURN statement (see
4.7 Return statement on page 44). If the routine is a function the RETURN
statement must specify an appropriate return value.

- Propagate the error to the caller of the routine by using the RAISE statement
(see 4.8 Raise statement on page 45) - "Since 1‘m not familiar with this error
it’s up to my caller to deal with it".

If an error occurs in a routine that does not contain an error handler or reaching the end
of the error handler (ENDFUNC, ENDPROC or ENDTRAP), the system error
handler is called. The system error handler just reports the error and stops the
execution.

RAPID kernel 61

Error recovery

In a chain of routine calls, each routine may have its own error handler. If an error
occurs in a routine with an error handler, and the error is explicitly propagated using
the RAISE statement, the same error is raised again at the point of the call of the routine
- the error is propagated. If the top of the call chain (the entry routine of the task) is
reached without any error handler found or if reaching the end of any error handler
within the call chain, the system error handler is called. The system error handler just
reports the error and stops the execution. Since a trap routine can only be called by the
system (as a response to an interrupt), any propagation of an error from a trap routine
is made to the system error handler.

In addition to errors detected and raised by the system, a program can explicitly raise
errors using the RAISE statement (see 4.8 Raise statement on page 45). The facility can
be used to recover from complex situations. For example it can be used to escape from
deeply nested code positions. Error numbers in the range from 1 to 90 may be used.
e.g. CONST errnum escapel := 10;

RAISE escapel;

ERROR

IF ERRNO = escapel THEN
RETURN val2;
ENDIF
ENDFUNC

Note that it is not possible to recover from or respond to errors that occur within an error
handler or backward handler. Such errors are always propagated to the system error
handler.

7.2 Error recovery with long jump

62

Error recovery with long jump may be used to bypass the normal routine call and return
mechanism to handle abnormal or exceptional conditions. To accomplish this, a
specific error recovery point must be specified. By using the RAISE instruction the long

jump will be performed and the execution control is passed to that error recovery point.

Error recovery with long jump is typically used to pass execution control from a deeply
nested code position, regardless of execution level, as quickly and simple as possible
to a higher level.

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Error recovery

Execution levels

An execution level is a specific context that the RAPID program is running in.
There are three execution levels in the system, Normal, Trap, and User:

- Normal level: All program are started at this level. This is the lowest level.

- Trap level: Trap routines are executed at this level. This level overrides the
Normal level but can be overridden by the User level.

- User level: Event routines and Service routines are executed at this level. This
level overrides Normal and Trap level. This level is the highest one and cannot
be overridden by any other level.

Error recovery point

The essential thing for error recovery with long jump is the characteristic error
recovery point.

The error recovery point is a normal ERROR clause but with an extended syntax, a list
of error numbers enclosed by a pair of parentheses, see example below:

Example:
MODULE examplel
PROC main()
I Do something important
myRoutine;
ERROR (56, ERR_DIVZERO)
RETRY;
ENDPROC
ENDMODULE

Syntax

An error recovery point has the following syntax: (EBNF)
[ERROR [<error number list>] <statement list>]

<error number list> ::="(* <error number> {"'," <error number>} ")’
<error number> ::=

<num literal>

| <entire constant>

| <entire variable>

| <entire persistent>

RAPID kernel 63

Error recovery

64

Using error recovery with long jump

MODULE example2
PROC main()
routinel,;
I Error recovery point
ERROR (56)
RETRY;
ENDPROC

PROC routinel()
routine2;
ENDPROC

PROC routine2()
RAISE 56;
ERROR
I This will propagate the error 56 to main
RAISE;
ENDPROC
ENDMODULE

The system handles a long jump in following order:

- The raised error number is search, starting at calling routine’s error handler and
to the top of the current call chain. If there is an error recovery point with the
raise error number, at any routine in the chain, the program execution continues
in that routine's error handler.

- If no error recovery point is found in the current execution level the searching
is continued in the previous execution level until the NORMAL level is
reached.

- If no error recovery point is found in any execution level the error will be raised
and handled in the calling routine's error handler, if any.

Error recovery through execution level boundaries

It is possible to pass the execution control through the execution level boundaries by
using long jump, i.e. the program execution can jump from a TRAP, USER routine to
the Main routine regardless how deep the call chains are in the TRAP, USER, and
NORMAL level.

This is useful way to handle abnormal situation that requires the program to continue
or start over from good and safely defined position in the program.

When a long jump is done from one execution level to another level there can be an
active instructions at that level. Since the long jump is done from one error handler to
another, the active instruction will be undone by the system (e.g. an active MoveX
instruction will clear its part of the path).

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Error recovery

Remarks

By using the predefined constant LONG_JMP_ALL_ERR it is possible to catch all
kinds of errors at the error recovery point.
Observe the following restrictions when using error recovery with long jump:

* Do not assume that the execution mode (cont, cycle, or forward step) is the same at
the error recovery point as it was where the error occurred. The execution mode is not
inherited at long jump.

* Be careful when using StorePath. Always call RestoPath before doing a long jump,
otherwise the results are unpredictable.

» The numbers of retries are not set to zero at the error recovery point after a long jump.

* Be careful when using TRYNEXT at the error recovery point, the result can be
unpredictable if the error occurs in a function call as in the example below:

Example:
MODULE Example3
PROC main
WHILE myFunction() = TRUE DO
myRoutine;
ENDWHILE
EXIT;
ERROR (LONG_JMP_ALL_ERR)
TRYNEXT;
ENDPROC
ENDMODULE

If the error occurs in the function myFunction and the error is caught in the main
routine, the instruction TRYNEXT will pass the execution control to the next
instruction, in this case EXIT. This is because the WHILE instruction considers to be
the one that fails

UNDO handler

When using long jump, one or several procedures may be dropped without executing
the end of the routine or the error handler. If no undo handler is used these routine may
leave loose ends. In the example below, routinel would leave the file log open if the

long jump was used and there was no undo handler in routinel.

To make sure that each routine cleans up after itself, use an undo handler in any routine
that may not finish the execution due to a long jump.

Example:
MODULE example4

PROC main()

routinel,;

I Error recovery point
ERROR (56)

RETRY;
ENDPROC

RAPID kernel 65

Error recovery

PROC routinel()
VAR iodev log;
Open "HOME:" \File:="FILE1.DOC", log;
routine2;
Write log, "routinel ends with normal execution™;
Close log;
ERROR
I Another error handler
UNDO
Close log;
ENDPROC

PROC routine2()
RAISE 56;
ERROR
I This will propagate the error 56 to main
RAISE;
ENDPROC
ENDMODULE

7.3 Nostepin routines

66

The nostepin routines in a nostepin module can call each other in call chains. Using the
RAISE instruction in the error handler of one of the routines in the call chain will
propagate the error one step up in the call chain. In order to raise the error to the user
level (outside the nostepin module) with the RAISE instruction, every routine in the call
chain must have an error handler that raise the error.

By using the RaiseToUser instruction, the error can be propagated several steps up in
the call chain. The error will then be handled by the error handler in the last routine in
the call chain that is not a nostepin routine.

If RaiseToUser is called with the argument \Continue, the instruction (in the nostepin
routine) that caused the error will be remembered. If the error handler that handles the
error ends with RETRY or TRYNEXT, the execution will continue from where the error
occured.

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Error recovery

|
|
|
: I
2roc reutinel () | :
1 |
. . X - |
routines; : 2R0C routinc2 () |
|
- |
|
—» | FRROR ! . 2 . I
I routine3; ————————9® PROC routine3 () |
|
e |
. | :
RIAMT2V; | R .. :
FNDPROC | ERRCR |
| e
|
I ENDPROC |
| o
| RaiseToUser \Coatirue; L
| ENDPROC :
|
|
| 4. !
; I
|
3 \
- R |
1. routine2 is called
2. routine3 is called
3. the error is raised to user level
4. execution returns to the instruction in routine3 that caused the error

Note: One or several routines may be dropped without executing the end of the routine
or the error handler. In the example this would have been the case for routine2 if
RaiseToUser had used the argument \BreakOff instead of \Continue. To make sure such
a routine does not leave any loose ends (such as open files) make sure there is an undo
handler that cleans up (e.g. close files).

Note: If the routine that calls the nostepin routine (routinel in the example) is made to
a nostepin routine, the error will no longer be handled by its error handler. Changing a
routine to a nostepin routine can require the error handler to be moved to the user layer.

7.4 Asynchronously raised errors

About asynchronously raised errors

If a move instruction ends in a corner zone, the next move instruction must be executed
before the first move instruction has finishedits path. Otherwise the robot would not
know how to move in the corner zone. If each move instruction only move a short
distance with large corner zones, several move instructions may have to be executed
ahead.

An error may occur if something goes wrong during the robot movement. However, if
the program execution has continued, it is not obvious which move instruction the
robot is carrying out when the error occur. The handling of asynchronously raised
errors solve this problem.

The basic idea is that an asynchronously raised error is connected to a move instruction
and is handled by the error handler in the routine that called that instruction.

RAPID kernel 67

Error recovery

68

Two types of asynchronously raised errors

There are two ways of creating asynchronously raised errors, resulting in slightly
different behavior:

- ProcerrRecovery \SyncOrgMovelnst creates an asynchronous error that is
connected to the move instruction which created the current robot path.

- ProcerrRecovery \SyncLastMovelnst creates an asynchronous error that is
connected to the move instruction that is currently being executed. If no move
instruction is being executed this error is connected to the next move instruction
that will be executed.

If an error occurs during the first path but when the program is calculating the second
path (see illustration below), the behavior depends on the argument of
ProcerrRecovery. If the error is created with \SyncOrgMovelnst, it is connected to the
first move instruction (the instruction that created the first path). If the error is created
with \SyncLastMovelnst, it is connected to the second move instruction (the instruction
that created the second path).

First path

p0 /’/ ;;1\‘/

* } - ° |

M /I A

<.
Second
_ Y path
Part of first path when the
program is executing the
second move instruction.
‘ p2 \

Attempt to handle errors in the routine that called the move instruction

If you create a routine with error handling to take care of process errors that may occur
during robot movement, you want these errors to be handled in this routine. If the error
is raised when the program pointer is in a subroutine, you do not want the error handler
of that subroutine to handle the error.

Asynchronously raised errors are connected to the path that the robot is currently
performing. An asynchronously raised error can be handled by the error handler in the
routine whose move instruction created the path the robot is carrying out when the error
occurs.

In the example shown below, a process error occurs before the robot has reached p1,
but the program pointer has already continued to the subroutine write_log.

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Error recovery

2roe main ()

my process; ———————®» 2R0C my_pzocecss ()

FRROR tU R
MoveL pl, v300, z10, toclll;

wzite_log; B pROC write_log ()
Movel p2, v300, z10, tocll;

FNDPROC

EXROR ERROR

ENDPROC ENDPROC

If there was no handling of asynchronously raised errors, an error that was raised when
the program pointer was in write_log would be handled by the error handler in
write_log. The handling of asynchronously raised errors will make sure that the error
is handled by the error handler in my_process.

An asynchronous error created with ProcerrRecovery \SyncOrgMovelnst would
instantly be handled by the error handler in my_process. An asynchronous error created
with ProcerrRecovery \SyncLastMovelnst would wait for the program pointer to reach
the second move instruction in my_process before being handled by the error handler
in my_process.

Note: If a subroutine (write_log in the example) were to have move instructions and
\SyncLastMovelnst is used, the error might be handled by the error handler in the
subroutine.

If the error handler in my_process ends with EXIT, all program execution is stopped.

If the error handler in my_process ends with RAISE, the error is handled by the error
handler in main. The routine calls to my_process and write_log are dropped. If the error
handler in main ends with RETRY, the execution of my_process starts over.

If the error handler in my_process ends with RETRY or TRYNEXT, the program
execution continues from where the program pointer is (in write_log). The error
handler should have solved the error situation and called StartMove to resume the
movement for the instruction that caused the error. Even if the error handler ends with
RETRY, the first MoveL instruction is not executed again.

Note: In this case TRYNEXT works the same way as RETRY because the system can
be restarted from where the error occurred.

RAPID kernel 69

Error recovery

What happens when a routine call is dropped?

When the execution reach the end of a routine, that routine call is dropped. The error
handler of that routine call cannot be called if the routine call has been dropped. In the
example below, the robot movement will continue after the first my_process routine
call has been dropped (since the last move instruction has a corner zone).

2roc main ()

my process; e SROC my_ process ()
my process;
MovelL pl, v300, z10, tocll;
Movel p2, Vv300, z10, tocll;

FRROR
EXROR

FNDPROC

ENDPROC

If the program pointer is in main when an error originating from the first my_process
occurs, it cannot be handled by the error handler in the my_process routine call. Where
this error is handled will then depend on how the asynchronous error is created:

- If the error is raised with ProcerrRecovery \SyncOrgMovelnst, the error will be
handled one step up in the call chain. The error is handled by the error handler
in the routine that called the dropped routine call. In the example above, the
error handler in main would handle the error if the my_process routine call has
been dropped.

- If the error is raised with ProcerrRecovery \SyncLastMovelnst, the error will be
handled by the error handler where the next move instruction is, i.e. the second
routine call to my_process. The raising of the error may be delayed until the
program pointer reach the next move instruction.

Tip: To make sure asynchronously raised errors are handled in a routine, make sure the

last move instruction ends with a stop point (not corner zone) and does not use \Conc.

Code example

In this example, asynchronously raised errors can be created in the routine my_process.
The error handler in my_process is made to handle these errors.

A process flow is started by setting the signal do_myproc to 1. The signal di_proc_sup
supervise the process, and an asynchronous error is raised if di_proc_sup becomes 1.
In this simple example, the error is resolved by setting do_myproc to 1 again before
resuming the movement.

MODULE user_module
VAR intnum proc_sup_int;
VAR iodev logfile;

PROC main()

70 RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Error recovery

my_process;
my_process;

ERROR
ENDPROC

PROC my_process()
my_proc_on;
Movel p1, v300, z10, tool1;
write_log;
Movel p2, v300, z10, tool1;
my_proc_off;
ERROR
IF ERRNO = ERR_PATH_STOP THEN
my_proc_on;
StartMove;
RETRY;
ENDIF
ENDPROC

PROC write_log()
Open “HOME:” \File:= “log.txt”, logfile \Append;
Write logfile “my_process executing”;
Close logfile;

ERROR
IF ERRNO = ERR_FILEOPEN THEN

TRYNEXT;

ENDIF

UNDO
Close logfile;

ENDPROC

TRAP iprocfail
my_proc_off;
ProcerrRecovery \SyncLastMovelnst;
RETURN;

ENDTRAP

PROC my_proc_on()
SetDO do_myproc, 1;
CONNECT proc_sup_int WITH iprocfail;
ISignalDlI di_proc_sup, 1, proc_sup_int;
ENDPROC

PROC my_proc_off()
SetDO do_myproc, 0;
IDelete proc_sup_int;

ENDPROC

ENDMODULE

RAPID kernel 71

Error recovery

Error when PP is in write_log

What will happen if a process error occurs when the robot is on its way to p1, but the
program pointer is already in the subroutine write_log?

The error is raised in the routine that called the move instruction, i.e. my_process, and
is handled by its error handler.

Since the ProcerrRecovery instruction, in the example, use the switch
\SyncLastMovelnst, the error will not be raised until the next move instruction is active.
Once the second MoveL instruction in my_process is active, the error is raised and
handled in the error handler in my_process.

If ProcerrRecovery had used the switch \SyncOrgMovelnst, the error would have been
raised in my_process instantly.

Error when execution of my_process has finished

What will happen if a process error occurs when the robot is on its way to p2, but the
program pointer has already left the routine my_process?

The routine call that caused the error (the first my_process) has been dropped and its
error handler cannot handle the error. Where this error is raised depends on which
switch is used when calling ProcerrRecovery.

Since the ProcerrRecovery instruction, in the example, use the switch
\SyncLastMovelnst, the error will not be raised until the next move instruction is active.
Once a move instruction is active in the second my_process routine call, the error is
raised and handled in the error handler in my_process.

If ProcerrRecovery had used the switch \SyncOrgMovelnst, the error would have been
raised in main. The way \SyncOrgMovelnst works is that if the routine call that caused
the error (my_process) has been dropped, the routine that called that routine (main) will
raise the error.

Note: If there had been a move instruction between the my_process calls in main, and
\SyncLastMovelnst was used, the error would be handled by the error handler in main.
If another routine with move instructions had been called between the my_process
calls, the error would have been handled in that routine. This shows that when using
\SyncLastMovelnst you must have some control over which is the next move
instruction.

Nostepin move instructions and asynchronously raised errors
When creating a customized nostepin move instruction with a process, it is

recommended to use ProcerrRecovery \SyncLastMovelnst. This way, all
asynchronously raised errors can be handled by the nostepin instruction.

72 RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Error recovery

This requires that the user only use this type of move instruction during the entire
movement sequence. The movement sequence must begin and end in stop points. Only
if two instructions have identical error handlers can they be used in the same movement
sequence. This means that one linear move instruction and one circular, using the same
process and the same error handler, can be used in the same movement sequence.

If an error should be raised to the user, use RaiseToUser \Continue. After the error has
been resolved, the execution can then continue from where the error occured.
UNDO handler

The execution of a routine can be abruptly ended without running the error handler in
that routine. This means that the routine will not clean up after itself.

In the example below, we assume that an asynchronously raised error occurs while the
robot is on its way to p1 but the program pointer is at the Write instruction in write_log.
If there was no undo handler, the file logfile would not be closed.

2X0C main ()

my_process; —————» 2X0C my process ()
Movel pl, v300, z1l0, tocll;

cet wzite_log; »| 2X0C write_log ()
EXROR MoveL p2, v300, z10, tocll; Open .. logfile ..;
EXROR Wzite logfile ..;
PN Close logfile;
ENDPROC EXROR

ENDPROC

JNDO
Close logfile;
ENDPROC

This problem can be solved by using undo handlers in all routines that can be
interrupted by an asynchronously raised error. It is in the nature of asynchronously
raised errors that it is difficult to know where the program pointer will be when they
occur. Therefore, when using asynchronously raised errors, use undo handlers
whenever clean up may be necessary.

7.5 SkipWarn

An error that is handled in an error handler still generates a warning in the event log.
If, for some reason, you do not want any warning to be written to the event log, the
instruction SkipWarn can be used.

Example:

In the following example code, a routine tries to write to a file that other robot systems
also have access to. If the file is busy, the routine waits 0.1 seconds and tries again. If
SkipWarn was not used, the log file would write a warning for every attempt, even
though these warnings are totally unnecessary. By adding the SkipWarn instruction, the
operator may not notice that the file was busy at the first attempt.

RAPID kernel 73

Error recovery

Note that the maximum number of retries is determined by the parameter No Of Retry.
To make more than 4 retries, you must configure this parameter.

PROC routinel()
VAR iodev report;
Open "HOME:" \File:= "FILE1.DOC", report;
Write report, "No parts from Rob1="\Num:=reg1,
Close report;
ERROR
IF ERRNO = ERR_FILEOPEN THEN
WaitTime 0.1;
SkipWarn;
RETRY;
ENDIF
ENDPROC

74 RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Interrupts

8 Interrupts

Interrupts are program defined events identified by interrupt numbers. An interrupt
occurs as a consequence of an interrupt condition turning true. Unlike errors, the
occurrence of an interrupt is not directly related to (synchronous with) a specific code
position. The occurrence of an interrupt causes suspension of the normal program
execution and the control is passed to a trap routine. Interrupt numbers are allocated
and connected (associated) with a trap routine using the connect statement (see 4.12
Connect statement on page 47). Interrupt conditions are defined and manipulated using
predefined routines. A task may define an arbitrary number of interrupts.

8.1 Interrupt recognition and response

Even though the system recognizes the occurrence of an interrupt immediately, the
response in the form of calling the corresponding trap routine can only take place at
specific program positions, namely:

- at the entry of next (after interrupt recognition) statement (of any type).

- after the last statement of a statement list.

- any time during the execution of a waiting routine (e.g. WaitTime).
This means that, after the recognition of an interrupt, the normal program execution
always continues until one of these positions are reached. This normally results in a

delay of 2-30 ms between interrupt recognition and response, depending on what type
of movement is being performed at the time of the interrupt.

8.2 Interrupt manipulation

Interrupt numbers are used to identify interrupts/interrupt conditions. Interrupt
numbers are not just "any" numbers. They are "owned" by the system and must be
allocated and connected with a trap routine using the connect statement (see 4.12
Connect statement on page 47) before they may be used to identify interrupts.

e.g. VAR intnum full;

CONNECT full WITH ftrap;

Interrupts are defined and manipulated using predefined routines. The definition of an
interrupt specifies an interrupt condition and associates it with an interrupt number.

e.g. I define feeder interrupts
ISignalDl sig3, high, full;

An interrupt condition must be active to be watched by the system. Normally the

definition routine (e.g. 1SignalDI) activates the interrupt but that is not always the case.
An active interrupt may in turn be deactivated again (and vice versa).

RAPID kernel 75

Interrupts

e.g. I deactivate empty
ISleep empty;

I activate empty again
IWatch empty;

The deletion of an interrupt deallocates the interrupt number and removes the interrupt
condition. It is not necessary to explicitly delete interrupts. Interrupts are automatically
deleted when the evaluation of a task is terminated.

e.g. I delete empty
IDelete empty;

The raising of interrupts may be disabled and enabled. If interrupts are disabled any
interrupt that occurs is queued and raised first when interrupts are enabled again. Note
that the interrupt queue may contain more than one waiting interrupt. Queued interrupts
are raised in fifo order. Interrupts are always disabled during the evaluation of a trap
routine (see 8.3 Trap routines on page 76).

e.g. I enable interrupts
IEnable;

I disable interrupts
IDisable;

8.3 Trap routines

Trap routines provide a means to respond to interrupts. A trap routine is connected with
a particular interrupt number using the connect statement (see 4.12 Connect statement
on page 47). If an interrupt occurs, the control is immediately (see 8.1 Interrupt
recognition and response on page 75) transferred to it’s connected trap routine.

e.g. LOCAL VAR intnum empty;
LOCAL VAR intnum full;

PROC main()

I Connect feeder interrupts
CONNECT empty WITH ftrap;
CONNECT full WITH ftrap;

I define feeder interrupts
ISignalDl sigl, high, empty;
ISignalDl sig3, high, full;

ENDPROC

76 RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Interrupts

TRAP ftrap
TEST INTNO
CASE empty:

open_valve
CASE full:
close_valve;
ENDTEST
RETURN;
ENDTRAP

More than one interrupt may be connected with the same trap routine. The predefined
(readonly) variable INTNO contains the interrupt number and can be used by a trap
routine to identify the interrupt. After necessary actions have been taken a trap routine
can be terminated using the return statement (see 4.7 Return statement on page 44) or
by reaching the end (endtrap or error) of the trap routine. The execution continues at
the point of the interrupt. Note that interrupts are always disabled (see 8.2 Interrupt
manipulation on page 75) during the evaluation of a trap routine.

Since a trap routine can only be called by the system (as a response to an interrupt),

any propagation of an error from a trap routine is made to the system error handler (see
7 Error recovery on page 61).

RAPID kernel 77

Interrupts

"pantasal sIybU |1V 99V 8002-7002 BLAd0D @

RAPID kernel

78

© Copyright 2004-2008 ABB. All rights reserved.

Task modules

9 Task modules

An RAPID application is called a task. A task is composed of a set of modules. A
module contains a set of type definitions, data and routine declarations. The task buffer
is used to host modules currently in use (execution, development) on a system. RAPID
program code in the task buffer may be loaded/stored from/to file oriented external
devices (normally disk files) either as separate modules or as a group of modules - a
Task.

RAPID distinguishes between task modules and system modules. A task module is
considered to be a part of the task/application while a system module is considered to
be a part of the “system”. System modules are automatically loaded to the task buffer
during system start-up and are aimed to (pre)define common, system specific data
objects (tools, weld data, move data ..), interfaces (printer, logfile ..) etc. System
modules are not included when a task is saved on a file. This means that any update
made to a system module will have impact on all existing (old) tasks currently in, or
later loaded to the task buffer. In any other sense there is no difference between task
and system modules; they can have any content.

While small applications usually are contained in a single task module (besides the
system module/s), larger applications may have a "main" task module that in turn
references routines and/or data contained in one or more other, "library™ task modules.

Task Buffer
System Modules

Disk (ram, hard, floppy)

/\ em maoauie
system module

Task Modules (Task)

module load/store »
task load/store

'l d maoa g
"Library" module

A "library” module may for example define the interface of a physical or logical object
(gripper, feeder, counter etc.) or contain geometry data generated from a CAD-system
or created on-line by digitizing (teach in).

One task module contains the entry procedure of the task. Running the task really
means that the entry routine is executed. Entry routines must be parameterless.

RAPID kernel 79

Task modules

9.1 Module declarations

80

A module declaration specifies the name, attributes and body of a module. A module
name hides any predefined object with the same name. Two different modules may not
share the same name. A module and a global module object (type, data object or
routine) may not share the same name. Module attributes provide a means to modify
some aspects of the systems treatment of a module when it is loaded to the task buffer.
The body of a module declaration contains a sequence of data declarations followed by
a sequence of routine declarations.

<module declaration> ::=
MODULE <module name> [<module attribute list>]
<type definition list>
<data declaration list>
<routine declaration list>
ENDMODULE
<module name> ::= <identifier>
<module attribute list> ::=’(” <module attribute> { ’,” <module attribute> } ’)’
<module attribute> ::=
SYSMODULE
| NOVIEW
| NOSTEPIN
| VIEWONLY
| READONLY

<routine declaration list> ::= { <routine declaration> }
<type definition list> ::= { <type definition> }
<data declaration list> ::= { <data declaration> }

The module attributes have the following meaning:

attribute if specified, the module ..
SYSMODULE .. Is a system module, otherwise a task module
NOVIEW .. (it’s source code) cannot be viewed (only executed)
NOSTEPIN .. cannot be entered during stepwise execution
VIEWONLY .. cannot be modified.
READONLY .. cannot be modified, but the attribute can be removed.

An attribute may not be specified more than once. If present, attributes must be
specified in table order (see above). The specification of noview excludes nostepin,
viewonly and readonly (and vice versa). The specification of viewonly excludes
readonly (and vice versa).

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

e.g.
task:

RAPID kernel

Task modules

The following three modules could represent a (very simple)

MODULE progl(SYSMODULE, VIEWONLY)
PROC main()
Iinit weldlib
initweld;
FOR i FROM 1 TO Dim(posearr,1) DO
slow posearr{i};
ENDFOR
ENDPROC
PROC slow(pose p)
arcweld p \speed := 25;
ENDPROC
ENDMODULE

MODULE weldlib
LOCAL VAR welddata wl := sysw1;
I weldlib init procedure
PROC initweld()
I override speed
wl.speed := 100;
ENDPROC
PROC arcweld(pose position \ num speed | num time)

ENDPROC
ENDMODULE

MODULE weldpath - (CAD) generated module
CONST pose posearr{768} := [
[[234.7,1136.7, 10.2], [1, O, O, 01],

[[77.2, 68.1, 554.7], [L, 0, 0, O]]

I;
ENDMODULE

81

Task modules

9.2 System modules

82

System modules are used to (pre)define system specific data objects (tools, weld data,
move data ..), interfaces (printer, logfile ..) etc. Normally, system modules are
automatically loaded to the task buffer during system start-up.

e.g.

MODULE sysun1(SYSMODULE)

I Provide predefined variables
VAR num nl :=0;
VAR num n2 :=0;
VAR num n3 :=0;
VAR pos pl := [0, 0, 0];
VAR pos p2 := [0, 0, 0]; ...
I Define channels - open in init function
VAR channel printer;
VAR channel logfile; ...
I Define standard tools
PERS pose bmtool := ...
I Define basic weld data records
PERS wdrecwdl :=1 ...
I Define basic move data records
PERS mvrec mvl =] ...
I Define home position - Sync. Pos. 3
PERS robtarget home :=1 ...
I Init procedure
LOCAL PROC init()
Open\write, printer, "/dev/lpr";
Open\write, logfile, "/usr/pm2/logl”... ;
ENDPROC

ENDMODULE

The selection of system module/s is a part of system configuration.

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Syntax summary

10 Syntax summary

Each rule or group of rules are prefixed by a reference to the section where the rule is

introduced.

2.1:

2.3:

2.5:

RAPID kernel

<character> ::= -- ISO 8859-1 (Latin-1)--
<newline> ::= -- newline control character --
<tab> ::= -- tab control character --

<digit>=0[1]2|3]4|5]6|7|8|9
<hex digit> ::= <digit>| A|B|C|D|E|F|a|b|c|d]|e|f

<letter> ::=
<upper case letter>
| <lower case letters>

<upper case letter> ::=
A|B|C|DJ|E]|
|[KILIM|N|O

<lower case letter> ::=
alblcld|e|[f[g|h]i]j
|k[I|m|nfo|p|q|r]s]|t
lulviw[x|y|z|Blala|ala
|alale|c|elé|é|e]i]i
|T|T|v|A|o[6]6|0|0]e
lajalalalafa|y

1) Icelandic letter eth.
2) Letter Y with acute accent.
3) Icelandic letter thorn

<identifier> ::=
<ident>
| <ID>
<ident> ::= <letter> {<letter> | <digit> | ’_"}
<num literal> ::=
<integer> [<exponent>]
| <integer>’.” [<integer>] [<exponent>]
| [<integer>]’.” <integer> [<exponent>]

<integer> ::= <digit> {<digit>}

83

Syntax summary

2.6:
2.7

2.10:
2.11;

component list>

2.18:

2.22:

84

<exponent> ::= (CE’ | ’e’) ['+’ | ’-’] <integer>

<bool literal> ::= TRUE | FALSE

<string literal> ::= """ { <character> | <character code> } "’

<character code> ::= "\’ <hex digit> <hex digit>

<comment> ::= 1" { <character> | <tab> } <newline>

<type definition> ::=

[LOCAL] (<record definition>
| <alias defnition>)

| <comment>

| <DN>

<record definition> ::=
RECORD <identifier>
<record component list>
ENDRECORD

<record component list> ::=
<record component definition> |

<record component definition> <record

<record component definition> ::=

<data type> <record component name>’;’

<alias definition> ::=
ALIAS <data type> <identifier>’;’

<data type> ::= <identifier>

<data declaration> ::=

[LOCAL] (<variable declaration>
| <persistent declaration>
| <constant declaration>)

| TASK (<variable declaration>
| <persistent declaration>

| <comment>

| <DDN>

<variable declaration> ::=

VAR <data type> <variable definition>’;’

<variable definition> ::=

<identifier> [*{" <dim> {’,” <dim>} "}’]
[;=" <constant expression>]

<dim> ::= <constant expression>

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

2.23:

Note! The literal expression may only be omitted for system global persistents.

2.24:

3.1:

3.1

3.1:

RAPID kernel

Syntax summary

<persistent declaration> ::=
PERS <data type> <persistent definition>’;’

<persistent definition> ::=
<identifier> [*{’ <dim> {’,” <dim>} "}’]
[;=" <literal expression>]

<constant declaration> ::=
CONST <data type> <constant definition> ’;’

<constant definition> ::=
<identifier> [*{’ <dim> {’,” <dim>} "}’]
’:=’ <constant expression>
<dim> ::= <constant expression>
<expression> ::=
<expr>
| <EXP>

<expr>::= [NOT] <logical term> { (OR | XOR) <logical
term> }

<logical term> ::= <relation> { AND <relation> }
<relation> ::= <simple expr> [<relop> <simple expr>]
<simple expr> ::= [<addop>] <term> { <addop> <term> }
<term> ::= <primary> { <mulop> <primary> }
<primary> ::=

<literal>

| <variable>

| <persistent>

| <constant>

| <parameter>

| <function call>

| <aggregate>

| 1(’ <expr> 1)1
<relop> ::: 1<1 | 1<:1 | 1:1 | 1>1 | 1>:1 | 1<>1
<addop> ::="+7|’-’
<mulop>::="*"|’/" | DIV | MOD
<constant expression> ::= <expression>

<literal expression> ::= <expression>

<conditional expression> ::= <expression>

85

Syntax summary

3.4:

3.5:

3.6

3.6

3.8

3.9:
3.10:

86

<literal> ::= <num literal>
| <string literal>
| <bool literal>

<variable> ::=
| <entire variable>
| <variable element>
| <variable component>

<entire variable> ::= <ident>
<variable element> ::= <entire variable> *{’ <index list> "}’
<index list> ::= <expr> {’,” <expr> }
<variable component> ::= <variable> ’.” <component name>
<component name> ::= <ident>
<persistent> ::=

<entire persistent>

| <persistent element>
| <persistent component>

<constant> ::=
<entire constant>
| <constant element>
| <constant component>

<parameter> ::=
<entire parameter>
| <parameter element>
| <parameter component>

<aggregate> ::="[" <expr>{’,” <expr>}’]

<function call> ::= <function> ’(’ [<function argument list>]
1)1
<function> ::= <identifier>

<function argument list> ::=
<first function argument> { <function argument>

<first function argument> ::=
<required function argument>
| <optional function argument>
| <conditional function argument>

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

4.2:
4.3:
4.4

RAPID kernel

Syntax summary

<function argument> ::=
’,” <required function argument>
| <optional function argument>
| °,” <optional function argument>
| <conditional function argument>
| >, <conditional function argument>

<required function argument> ::= [<ident> ":="] <expr>

<optional function argument> ::= "\’ <ident> [*:=" <expr>]

<conditional function argument> ::="\" <ident> *?’
<parameter>

<statement> ::=
<simple statement>
| <compound statement>
| <label>
| <comment>
| <SMT>

<simple statement> ::=
<assignment statement>
| <procedure call>
| <goto statement>
| <return statement>
| <raise statement>
| <exit statement>
| <retry statement>
| <trynext statement>
| <connect statement>

<compound statement> ::=
<if statement>
| <compact if statement>
| <for statement>
| <while statement>
| <test statement>

<statement list> ::= { <statement> }
<label> ::= <identifier> .’

<assignment statement> ::= <assignment target> ’:=’
<expression>’;’

<assighment target> ::=
<variable>
| <persistent>
| <parameter>
| <VAR>

87

Syntax summary

4.5: <procedure call> ::= <procedure> [<procedure argument list>
] 1;7
<procedure> ::=
<identifier>

| %’ <expression> "%’

<procedure argument list> ::=
<first procedure argument> { <procedure argu-
ment> }

<first procedure argument> ::=
<required procedure argument>
| <optional procedure argument>
| <conditional procedure argument>
| <ARG>

<procedure argument> ::=
’,” <required procedure argument>
| <optional procedure argument>
| >, <optional procedure argument>
| <conditional procedure argument>
| ”,” <conditional procedure argument>
|’,” <ARG>

<required procedure argument> ::= [<identifier> *:="]
<expression>

<optional procedure argument> ::="\’ <identifier> [*:=’
<expression>]

<conditional procedure argument> ::=
'\’ <identifier> ’?” (<parameter> | <VAR>)

4.6: <goto statement> ::= GOTO <identifier>’;’
4.7: <return statement> ::= RETURN [<expression>] ’;’
4.8: <raise statement> ::= RAISE [<error number>]’;’

<error number> ::= <expression>

4.9 <exit statement> ;= EXIT ’;’
4.10 <retry statement> ::= RETRY ’;’
4.11 <trynext statement> ::= TRYNEXT ’;’

88 RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

412

4.13:

4.13:

4.15:

4.16:

4.17:

RAPID kernel

Syntax summary

<connect statement> ::= CONNECT <connect target> WITH
<trap>’;’

<connect target> ::=
<variable>
| <parameter>
| <VAR>

<trap> ::= <identifier>

<if statement> ::=
IF <conditional expression> THEN <statement
list>
{ ELSEIF <conditional expression>
THEN <statement list> | <EIT> }
[ELSE <statement list>]
ENDIF

<compact if statement> ::=
IF <conditional expression> (<simple statement>
| <SMT>)

<for statement> ::=
FOR <loop variable> FROM <expression>
TO <expression> [STEP <expression>]
DO <statement list> ENDFOR

<loop variable> ::= <identifier>

<while statement> ::=
WHILE <conditional expression> DO
<statement list> ENDWHILE

<test statement> ::=
TEST <expression>
{ CASE <test value> { °,” <test value> } ’:’
<statement list>) | <CSE> }
[DEFAULT ’:’<statement list>]
ENDTEST

<test value> ::= <constant expression>

<routine declaration> ::=
[LOCAL] (<procedure declaration>
| <function declaration>
| <trap declaration>)
| <comment>
| <RDN>

89

Syntax summary

5.1

5.3

5.4:

90

<parameter list> ::=
<first parameter declaration> { <next parameter
declaration> }

<first parameter declaration> ::=
<parameter declaration>
| <optional parameter declaration>
| <PAR>

<next parameter declaration> ::=
’,” <parameter declaration>
| <optional parameter declaration>
| >, <optional parameter declaration>
|”, <PAR>

<optional parameter declaration> ::=
'\’ (<parameter declaration> | <ALT>)
{’I’ (<parameter declaration> |
<ALT>)}

<parameter declaration> ::=
[VAR | PERS | INOUT] <data type>
<identifier> [("*" {’,'*" }) |
<DIM> "}’]
| ’switch’ <identifier>

<procedure declaration> ::=
PROC <procedure name>
"(C [<parameter list>1])’
<data declaration list>
<statement list>
[BACKWARD <statement list>]
[ERROR [<error number list>] <statement list>]
[UNDO <statement list> |
ENDPROC

<procedure name> ::= <identifier>
<data declaration list> ::= { <data declaration> }

<function declaration> ::=
FUNC <data type>
<function name>
"(C [<parameter list>1])’
<data declaration list>
<statement list>
[ERROR [<error number list>] <statement list>]
[UNDO <statement list>]
ENDFUNC

<function name> ::= <identifier>

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

yright 2004-2008 ABB. All rights reserved.

~r

©C

5.5

9.1:

RAPID kernel

Syntax summary

<trap declaration> ::=
TRAP <trap name>
<data declaration list>
<statement list>
[ERROR [<error number list>] <statement list>

[UNDO <statement list>]
ENDTRAP

<trap name> ::= <identifier>

<error number list> ::="(* <error number> { ", <error
number>} ")’

<error number> ::=
<num literal>
| <entire constant>
| <entire variable>
| <entire persistent>

<module declaration> ::=
MODULE <module name> [<module
attriutelist>]
<type definition list>
<data declaration list>
<routine declaration list>
ENDMODULE

<module name> ::= <identifier>
<module attribute list> ::=

’(’ <module attribute> { ’,” <module attribute> }
1)1

<module attribute> ::=
SYSMODULE
| NOVIEW
| NOSTEPIN
| VIEWONLY
| READONLY

<type definition list> ::= { <type definition> }

<routine declaration list> ::= { <routine declaration> }

91

Syntax summary

"pantasal SIUBU 1V 'agV 8002700z ubliAdoD @

RAPID kernel

92

© Copyright 2004-2008 ABB. All rights reserved.

Built-in routines

11 Built-in routines
Dim

The dim function is used to get the size of an array (datobj). It returns the number of array
elements of the specified dimension.

FUNC num Dim (REF! anytype? datobj, num dimno)

legal dimno values : 1 -> select first array dimension
2 -> select second array dimension
3 -> select third array dimension

Present

The present function is used to test if the argument (datobj) is present (see 5.1). It returns
FALSE if datobj is a not present optional parameter, TRUE otherwise.

FUNC bool Present (REFL anytype? datobj)
Break

The break (breakpoint) procedure causes a temporary stop of program execution. Break is
used for RAPID program code debugging purposes.

PROC Break ()
IWatch

The iwatch procedure activates the specified interrupt (ino). The interrupt can later be deac-
tivated again using the isleep procedure.

PROC IWatch (VAR intnum ino)
ISleep

The isleep procedure deactivates the specified interrupt (ino). The interrupt can later be ac-
tivated again using the iwatch procedure.

PROC ISleep (VAR intnum ino)
IsPers

The ispers function is used to test if a data object (datobj) is (or is an alias for) a persistent
(see 5.1). It returns TRUE in that case, FALSE otherwise.

FUNC bool IsPers (INOUT anytype? datobj)
IsVar

1. Refer to 3.10 for more information on the ref access mode. Note that RAPID routines cannot have REF parameters.
2. The argument can have any data type. Note that anytype is just a marker for this property and should not be confused with a “real”
data type. Also note that RAPID routines cannot be given anytype parameters.

RAPID kernel 93

Built-in routines

The isvar function is used to test if a data object (datobj) is (or is an alias for) a variable (see
5.1). It returns TRUE in that case, FALSE otherwise.

FUNC bool IsVar (INOUT anytype! datobj)

1. The argument can have any data type. Note that anytype is just a marker for this property and should not be confused with a “real” data
type. Also note that RAPID routines cannot be given anytype parameters.

94 RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Built-in data objects

12 Built-in data objects

Table 1:

Object Name Object Kind Data Type Description
ERRNO variable™ errnum most recent error number
INTNO variable™ inthum most recent interrupt
ERR_ALRDYCNT constant errnum "variable and trap routine already connected"
ERR_ARGDUPCND constant errnum "duplicated present conditional argument"
ERR_ARGNOTPER constant errnum "argument is not a persistent reference™
ERR_ARGNOTVAR constant errnum "argument is not a variable reference
ERR_CALLPROC constant errnum "procedure call error (syntax, not procedure) at run time

(late binding)"
ERR_CNTNOTVAR constant errnum "CONNECT target is not a variable reference"
ERR_DIVZERO constant errnum "division by zero"
ERR_EXECPHR constant errnum "cannot execute placeholder"
ERR_FNCNORET constant errnum "missing return value"
ERR_ILLDIM constant errnum "array dimension out of range"
ERR_ILLQUAT constant errnum "illegal orientation value"
ERR_ILLRAISE constant errnum "error number in RAISE out of range"
ERR_INOMAX constant errnum "no more interrupt number available"
ERR_MAXINTVAL constant errnum "integer value too large"
ERR_NEGARG constant errnum "negative argument not allowed"
ERR_NOTARR constant errnum "data object is not an array"
ERR_NOTEQDIM constant errnum "mixed array dimensions"
ERR_NOTINTVAL constant errnum "not integer value"
ERR_NOTPRES constant errnum "parameter not present”
ERR_OUTOFBND constant errnum "array index out of bounds"
ERR_REFUNKDAT constant errnum "reference to unknown entire data object"
ERR_REFUNKFUN constant errnum "reference to unknown function"
ERR_REFUNKPRC constant errnum "reference to unknown procedure at linking time or at run time
(late binding)"

ERR_REFUNKTRP constant errnum "reference to unknown trap"
ERR_STRTOOLNG constant errnum "string too long"
ERR_UNKINO constant errnum "unknown interrupt number"

*) Read only - can only be updated by the system - not by a RAPID program.

RAPID kernel

95

Built-in data objects

"pantasal sIyBU || "agv 8002-¥002 WP1AdoD ©

RAPID kernel

96

© Copyright 2004-2008 ABB. All rights reserved.

Built in objects

13 Built in objects

There are three groups of “Built in objects”: Language kernel reserved objects,
Installed objects and User installed objects.

- Language kernel reserved objects are part of the system and can’t be removed
(or lived out in the configuration). Objects in this group are the instruction
Present, the variables intno, errno and much more. The set of objects in this
group is the same for all tasks (multitasking) and installations.

- Most of the Installed objects are installed at the first system start (or each P-
start) by the internal system configuration and cant be removed (e.g. the
instructions MovelL, MoveJ ...). Data objects corresponding to iosignals and
mecunits are installed according to the user configuration at each system start.

- The last group user installed objects are objects that are defined in RAPID
modules and installed according to the user configuration at the first system
start or each P-start.

The objects could be any RAPID object, that is procedure, function, record, record
component, alias, const, var or pers. Object values of pers and var could be changed,
but not the code it self, because of that a modpos of a built in constant declared
robtarget is not allowed.

The built in RAPID code could never be viewed.

13.1 Object scope
The scope of object denotes the area in which the object is visible. A built in object is
visible at all other levels in the task, if not the same object name is used for another
object at a level between the use of the reference and the built in level.

The table below show the order of scope levels lookup, for a object referred from
different places:

RAPID kernel 97

Built in objects

Table 2: Object search according to scope rules.

Scope level
P Own module

Own routine (local

The object is used in a declared)

Global in the
program
(global

declared in
one module)

Built in
objects

routine declared inauseror | 1 2
system module

3

data or routine declaration in 1
a user or system module

routine declared in a user 1 2
installed module

data or routine declaration in 1
a user installed module

installed object (only for
system developers)

There are ways to bind a reference in runtime to objects (not functions) outside its
scope. For data object see Technical reference manual - RAPID Instruction, functions
and data types - SetDataSearch and for procedures use late binding with lookup,
described in 4.5 Procedure call on page 42.

13.2 The value of a built in data object durability

The init value of a built in PERS or VAR object is set when the object is installed. It
could though be changed from the normal program. The object will always keep its
latest value even if the normal program is reset, erased or replaced. The only way to
reinit the object is to do a P-start or to change the configuration (then an automatic P-
start will be performed).

Note that the value of built in VAR object with a separate value per task, will be reset
at PP to Main. ERRNO is an example of a built in VAR object with a separate value for
each task.

Note that a built in PERS object is not replacing its init value with its latest as a normal
PERS object do.

13.3 The way to define user installed objects

98

The only way to install a user installed object is to define the object in a RAPID
module, create an new instance in the system parameter Task modules with the file path
to that module. The attribute Storage must then be set to Built in. (See system parameter,
type Controller). There are also an attribute for Task modules named TextResource thats
only valid for Built in objects, this make it possible to use national language or site

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Built in objects

depended names in the RAPID code for identifiers, without changing the code itself.
In the normal case that attribute should not be changed, but for the advanced users see
15 Text files on page 105.

Note that all used references in a Built in module must be known to the system at the
time for that module installation.

RAPID kernel 99

Built in objects

"pantasal SIUBU 1V 'agV 8002700z ubliAdoD @

RAPID kernel

100

© Copyright 2004-2008 ABB. All rights reserved.

Intertask objects

14 Intertask objects

There are two groups of Intertask objects : installed shared object and System global
persistent data object.

- An installed shared object is configurated as shared for all tasks. This make it
possible to save memory by reusing RAPID code for more than one task. Its
also the only way to share non-value and semi-value data object. (see Built in
objects in this manual). The object could be any RAPID object, that is
procedure, function, const ,var or pers.

- The current value of a system global persistent data object is shared by all tasks
where it is declared with the same name and type.

14.1 Symbol levels

A symbol in RAPID could be found at different levels, in a routine, in a module (local),
in the program of one task (in one module and defined as global) or at the system level.
Installed shared objects are on the system level.

The system level is departed into two part, a shared part and a task part. Objects in the
task part are local to that task, but objects in the shared part is global to all task.

The installed shared part is physicaly existing in task O (the shared task), but existing
logical in each task.

r

—,

N

shared part /taskpart /taskpart O\
global level global level Symbol
lookup
direction

module level module level

routine level routine level

TASK 0 TASK1 ... TASK N

Figure 1 Symbol levels with a departed system level.
The symbol search will start from that position (level) where the object is referred and

then, if not found, in nearest level above and so on. See the “Symbol lookup direction”
- arrow in Figure 1.

RAPID kernel 101

Intertask objects

14.2 Data object handling

Even if the definition is shared for a data object the value of it could be local in the task
. That are the fact for the installed system variables errno, intno and all stack allocated
object (object defined in a routine). All other data object share the value with other
tasks. This fact will demand a careful manipulation and reading of those values.

If the object has an atomic type (num, bool ,,,) there are no problem. But if not, make
sure that the total object are read/manipulated without any interfering from another
task. E.g. if the object is of a record type and each component are assign one by one, a
reading (between the setting of two record component) from another task will get an
inconsistent record.

Also remember that a routine could be called from more than one task at the same time
and therefore should be reentrant, that is use local stack allocated object (parameters
and data object declared in the routine).

14.3 The way to define installed shared object

The only way to install an installed shared object is to define the object in a RAPID
module, create an new instance of Task/Automatic loading of Modules in the system
parameter with the file path to the module. The attribute shared must be setto YES (see
also system parameter type Controller).

14.4 System global persistent data object

102

The current value of a system global persistent data object (e.g., not declared as task or
local) is shared by all tasks where it is declared with the same name and type. The
object will still exist even if one module where it is declared is removed as long as that
module do not contain the last declaration for that object. A persistent object could only
be of value type.

A declaration can specify an inital value to a persistent object, but it will only set the
initial value of the persistent when the module is installed or loaded for the first time.

Example of usage (several initial values):

task 1: PERS tooldata tooll :=[...];

task 2: PERS tooldata tooll :=1...];

Note that the current value of tool1 won’t be updated with the initial value of tooll in
the second loaded module. This is a problem if the initial value differs in the two tasks.

This is solved by specifying initial value in one declaration only.

Example of usage (one initial value):

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Intertask objects

task 1: PERS tooldata tooll :=...];
task 2: PERS tooldata tool1;

After load of the two tasks the current value of tooll is guranteed to be equal to the
inital value of the declaration in task 1 regardless of the load order of the modules.

It is recommended to use this technique for types such as tooldata, wobjdata and
loaddata. Specify initial value along with data declaration in the motiontask and omitt
initial value in other tasks.

It is also possible to specify no initial value at all.

Example of usage (no initial value):

task 1: PERS num state;

task 2: PERS num state;

The current value of state will be initialized like a variable without inital value, in this
case state will be equal to zero. This case is useful for intertask communication where

the state of the communication should not be saved when the program is saved or at
backup.

RAPID kernel 103

Intertask objects

"pantasal SIUBU 1V 'agV 8002700z ubliAdoD @

RAPID kernel

104

© Copyright 2004-2008 ABB. All rights reserved.

Text files

15 Text files

This is a most effective tool that should be used when the demand for the application
includes:

- Easily changeable texts, e.g. help and error texts (the customer should also be
able to handle these files)

- Memory saving, text strings in a Text file use a smaller amount of memory than
RAPID strings.

In a Text file you can use ASCII strings, with the help of an off-line editor, and fetch
them from the RAPID code. The RAPID code should not be changed in any way even
if the result from the execution may look totally different.

15.1 Syntax for a text file

The application programmer must build one (or serval) ASCII file(s), the “Text
file(s)”, that contains the strings for a text resource.

The “Text file” is organised as:

<text_resource>::

<comment>
<index1>:
“<text_string>"

<comment>
<index2>:
“<text_string>"

The parameters
<text_resource>

This name identifies the text resource. The name must end with “::”. If the name does
not exist in the system, the system will create a new text resource, otherwise the
indexes in the file will be added to a resource that already exists. The application
developer is responsible for ensuring that one’s own resources do not crash with
another application. A good rule is to use the application name as a prefix to the
resource name, e.g. MYAPP_TXRES. The name of the resource must not exceed 80
characters. Do not use exclusively alphanumeric as the name to avoid a collision with
system resources.

<index>

This number identifies the <text_string> in the text resource. This number is
application defined and it must end with a *:”

RAPID kernel 105

Text files

<text_string>

The text string starts on a new line and ends at the end of the line or, if the text string
must be formatted on several lines, the new line character string “\n” must be inserted.

<comment>

A comment always starts on a new line and goes to the end of the line. A comment is

always preceded by “#”. The comment will not be loaded into the system.

15.2 Retrieving text during program execution

It is possible to retrieve a text string from the RAPID code. The functions TextGet and

TextTabGet are used for this, see the chapter RAPID Support Functions.

The text file: text_file.eng

The module: write_from_file.mod

#This is the text file
ACTION_TXRES::

Start the activity

1:
Go

Stop the activity

2:

Stop

3:

Wait

Get Help

10:

Call_service_man
#Restart the controller

11:
Restart

MODULE write_from_file

VAR num text_res_no;
VAR string textl;

PROC main()
IF TextTabFreeToUse("ACTION_TXRES") THEN
TextTablnstall "HOME:/text_file.eng™;
ENDIF
text_res_no := TextTabGet("ACTION_TXRES");
textl := TextGet(text_res_no, 2);
TPWrite textl; ! The word ““Stop” will be printed.
ENDPROC

ENDMODULE

Figure 2 Example with text from separate text file.

15.3 Loading text files

106

Loading of the text file into the system can be done with the RAPID instruction
TextTablnstall and the function TextTabFreeToUse.

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

Storage allocation for RAPID objects

16 Storage allocation for RAPID objects

All RAPID programs stored on pc or controller have ASCII format.
At loading of RAPID program from pc/controller memory into the program memory
(internal format), the storage of the program needs about 4 times more memory space.

For memory optimize of RAPID programs, the storage allocation in program memory
(internal format in bytes) for some common instructions, datas etc. are specified below.
For other instructions or datas the storage allocation can be read from the operating
message 10040 after loading of a program or program module.

16.1 Module, routine, program flow and other basic instruction

Table 3 Storage allocation for module, routine, program flow and other basic instructions

Instruction or data Storage in
bytes

New empty module: MODULE modulel ... ENDMODULE 1732
New empty procedure without parameters: PROC procl() ... ENDPROC 224
Procedure call without arguments: procl; 36
Module numeric variable declaration: VAR num regl; 156
Numeric assignment: regl:=1; 44
Compact IF: IF reg1=1 procl; 124
IF statement: IF regl=1 THEN procl; ELSE proc2; ENDIF 184
Waits a given amount of time: WaitTime 1; 88
Comments: ! 0 - 7 chars (for every additional 4 chars) 36 (+4)
Module string constant declaration with 0-80 chars init string value: 332

CONST string stringl := “0-80 characters*;
Module string variable declaration with 0-80 chars init string value: 344

VAR string stringl := “0-80 characters*;
Module string variable declaration: VAR string stringl; 236
String assignment: string1:= “0-80 characters”; 52
Write text on FlexPendant: TPWrite “0-80 characters”; 176

RAPID kernel 107

Storage allocation for RAPID objects

16.2 Move instructions

Table 4 Storage allocation for move instructions.

. Storage in
Instruction or data bytes
Module robtarget constant declaration: CONST robtarget p1 :=[...]; 292
Robot linearly move: MoveL p1,v1000,z50,tool1; 244
Robot linearly move: MoveL *,v1000,z50,tool1; 312
Robot circular move: MoveC *,*,v1000,z50,tool1,; 432
16.3 1/O instructions
Table 5 Storage allocation for 1/O instructions
Instruction or data Storage in
bytes
Set digital output: Set dol; 88
Set digital output: SetDO do1l,1; 140
Wait until one digital input is high: WaitDI di1,1; 140
Wait until two digital inputs are high: WaitUntil dil=1 AND di2=1,; 220

108

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

© Copyright 2004-2008 ABB. All rights reserved.

A

Aggregates 33

Alias types 19
Assignment Statement 41
Atomic Types 15

B

Backward Execution 3
backward handler 3
Backward Handlers 57
Break 93

Built in objects 97
Built-in Data Objects 95
Built-in Data Types 4
Built-in Routines 93

C

compact if statemen 48
Connect Statement 47
constant 97, 101
Constant Declarations 27
Constants 33

D

data 97, 101, 105
Data Declarations 22
Data Objects 2
Data Types 4, 14
declaration
persistent 98, 102, 106
variable 102

E

Error Classification 6

error handler 3

Error Handlers 61

Error Recovery 3, 61

Error recovery point 63

Error recovery through execution
boundaries 64

Execution levels 63

Exit Statement 45

level

F

For Statement 48
Function calls 34

RAPID kernel

Index

Function Declarations 55
G

Goto Statement 44

|

If Statement 47

Installed Data Types 5

Interrupt Manipulation 75

Interrupt Recognition and Response 75
Interrupts 4, 75

ISleep 93

IsPers 93

IsVar 93

IWatch 93

L

Label Statement 41
Lexical Elements 9

M

Module Declarations 80
N

Num 11

@)

Operators 36

P

Parameters 33

persistent 97, 101
Persistent Declarations 26
Placeholders 5

Predefined Data Objects 23
Present 93

Procedure Call 42
Procedure Declarations 54

R

Raise Statement 45
Record Types 16
Reserved Words 11
Retry Statement 46
Return Statement 44

109

Routine Declarations 51
Routines 2

S

scope

data scope 97, 105
Scope Rules 15, 54
Statement Lists 40
Statement Termination 40
Statements 39
Syntax Summary 83
System Modules 82
system modules 1

T

Task - Modules 1
task buffer 1

Task Modules 79
task modules 1

Test Statement 49
Trap Routines 76
Trynext Statement 46

U
User-defined Data Types 5
\%

variable 97
Variable Declarations 25

W

While Statement 49

110

RAPID kernel

© Copyright 2004-2008 ABB. All rights reserved.

AL ED HD
FRipmw

ABB AB

Robotics Products

SE-721 68 Vasteras

SWEDEN

Telephone: +46 (0) 21-34 40 00
Telefax: +46 (0) 21-13 25 92

3HAC16585-1, Revision F, En

	Technical reference manual - RAPID kernel
	Contents
	1 Introduction
	1.1 Design objectives
	1.2 Language summary
	Task - modules
	Routines
	User routines
	Predefined routines
	Data objects
	Statements
	Backward execution
	Error recovery
	Undo execution
	Interrupts
	Data types
	Built-in data types
	Installed data types
	User-defined data types
	Placeholders

	1.3 Syntax notation
	1.4 Error classification

	2 Lexical elements
	2.1 Character set
	2.2 Lexical units
	2.3 Identifiers
	2.4 Reserved words
	2.5 Num literals
	2.6 Bool literals
	2.7 String literals
	2.8 Delimiters
	2.9 Placeholders
	2.10 Comments
	2.11 Data types
	2.12 Scope rules
	2.13 Atomic types
	Num type
	Bool type
	String type

	2.14 Record types
	Pos type
	Orient type
	Pose type

	2.15 Alias types
	Errnum type
	Intnum type

	2.16 Data type value classes
	2.17 Equal types
	2.18 Data declarations
	2.19 Predefined data objects
	2.20 Scope rules
	2.21 Storage class
	2.22 Variable declarations
	2.23 Persistent declarations
	2.24 Constant declarations

	3 Expressions
	3.1 Constant expressions
	3.2 Literal expressions
	3.3 Conditional expressions
	3.4 Literals
	3.5 Variables
	Entire variable
	Variable element
	Variable component

	3.6 Persistents
	3.7 Constants
	3.8 Parameters
	3.9 Aggregates
	3.10 Function calls
	3.11 Operators
	Multiplication operators
	Addition operators
	Relational operators
	Logical operators

	4 Statements
	4.1 Statement termination
	4.2 Statement lists
	4.3 Label statement
	4.4 Assignment statement
	4.5 Procedure call
	4.6 Goto statement
	4.7 Return statement
	4.8 Raise statement
	4.9 Exit statement
	4.10 Retry statement
	4.11 Trynext statement
	4.12 Connect statement
	4.13 If statement
	4.14 Compact IF statement
	4.15 For statement
	4.16 While statement
	4.17 Test statement

	5 Routine declarations
	5.1 Parameter declarations
	5.2 Scope rules
	5.3 Procedure declarations
	5.4 Function declarations
	5.5 Trap declarations

	6 Backward execution
	6.1 Backward handlers
	6.2 Limitation of move instructions in the backward handler

	7 Error recovery
	7.1 Error handlers
	7.2 Error recovery with long jump
	Execution levels
	Error recovery point
	Syntax
	Using error recovery with long jump
	Error recovery through execution level boundaries
	Remarks
	UNDO handler

	7.3 Nostepin routines
	7.4 Asynchronously raised errors
	About asynchronously raised errors
	Two types of asynchronously raised errors
	Attempt to handle errors in the routine that called the move instruction
	What happens when a routine call is dropped?
	Code example
	Error when PP is in write_log
	Error when execution of my_process has finished

	Nostepin move instructions and asynchronously raised errors
	UNDO handler

	7.5 SkipWarn

	8 Interrupts
	8.1 Interrupt recognition and response
	8.2 Interrupt manipulation
	8.3 Trap routines

	9 Task modules
	9.1 Module declarations
	9.2 System modules

	10 Syntax summary
	11 Built-in routines
	12 Built-in data objects
	13 Built in objects
	13.1 Object scope
	13.2 The value of a built in data object durability
	13.3 The way to define user installed objects

	14 Intertask objects
	14.1 Symbol levels
	14.2 Data object handling
	14.3 The way to define installed shared object
	14.4 System global persistent data object

	15 Text files
	15.1 Syntax for a text file
	15.2 Retrieving text during program execution
	15.3 Loading text files

	16 Storage allocation for RAPID objects
	16.1 Module, routine, program flow and other basic instruction
	16.2 Move instructions
	16.3 I/O instructions

	Index

